ایجاد سامانه شاخص‌های بیابان‌زایی بر اساس DPSIR (بهره گیری از روش فازی- تاپسیس)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار دانشکده منابع طبیعی و محیط زیست، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشیار دانشکده منابع طبیعی و کویرشناسی، دانشگاه یزد، یزد، ایران

3 استادیار دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی، واحد یزد، یزد، ایران

چکیده

  مطالعات ارزیابی و پایش بیابان­زایی بر روی داده­ها و شاخص­های درست و دقیق به منظور تعیین شاخص­های بیابان­زایی برای بکارگیری در برنامه­های کاهش و جلوگیری از فرایند بیابان­زایی متمرکز شده است. آنچه در ارزیابی بیابان­زایی مهم به نظر می­رسد امتیازدهی برای اولویت­بندی و رتبه­بندی شاخص­های بیابان­زایی به گونه­ای است که در برنامه­های کاهش اثرات این فرایند، قابل استناد باشد. هدف رتبه­بندی، ترتیب­بندی، آرایش داده­ها و دادن امتیاز به شاخص­هاست. در بسیاری از موارد در رتبه­بندی شاخص­ها، ابهام و عدم اطمینان وجود دارد. در این پژوهش با کمک تئوری فازی و تلفیق آن با روش­های تصمیم­گیری چند شاخصه به تعیین سامانه شاخص بیابان­زایی به منظور مدیریت ریسک این پدیده پرداخته شده است. در ابتدا شاخص­های موثر در بیابان­زایی شناسایی و به وسیله گروه خبرگان ارزیابی و اهمیت هر شاخص تعیین گردید. در نهایت، با تلفیق فازی و روش تاپسیس در قالب مجموعه مثلثی فازی، شاخص­ها رتبه­بندی و سامانه شاخص­های بیابان­زایی برای مدیریت ریسک تعیین شد. نتایج پژوهش نشان می­دهد کهشاخص­های مربوط به پوشش گیاهی و شاخص­های فشار، اهمیت بالا در بیابانی شدن دارند. بنابراین، در مدیریت ریسک بیابان­زایی نقش مهم­تری نیز دارند. همچنین ارزیابی­ها موید توان بالای تلفیق فازی و روش تاپسیس در کاهش ابهام است. لازم به ذکر است این پژوهش در قالب پروژه DesertWatch و انتخاب شاخص­ها بر اساس DPSIR بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Development of Desertification Indicator System Base on DPSIR (Take advantages of Fuzzy-TOPSIS)

نویسندگان [English]

  • A. Sepehr 1
  • M. R. Ekhtesasi 2
  • S.A. Almodaresi 3
1 Assistant Professor, Faculty of Natural Resources and Environment, Ferdowsi University Of Mashhad (FUM) , Mashhad, Iran
2 Associate Professor, Faculty of Natural Resources and Desert Studies, Yazd University, Yazd, Iran
3 Assistant Professor, Faculty of Engineering, Islamic Azad University, Yazd Branch, Yazd, Iran
چکیده [English]

 



Extended abstract
1- Introduction
Desertification assessment and monitoring studies have focused on providing reliable data and information sources, to underscore the understanding of the causes of desertification, in order to forecast and combat future desertification, as well as to mitigate the effects of on-going processes. Seems whatever has most important in all of desertification studies is selecting, ranking, scoring and preference of desertification indicators to develop desertification indicator systems which is guideline to apply management projects to combat desertification process. Ranking objects is a simple and natural procedure for organizing data.
 
 
It is often performed by assigning a quality score to each indicator according to its relevance to the problem at hand. Ranking is widely used for indicator selection, when resources are limited and it is necessary to select a subset of most relevant objects for further processing. In real world situations, the object's scores are often calculated from noisy measurements, casting doubt on the ranking reliability.
 
2- Methodology
In this paper have been introduced a Fuzzy-MCDM method for developing desertification indicator system. This paper tries to illustrate TOPSIS method for selection, scoring and preference of desertification indicators. In the first step, were identified the main desertification indicators based on main criteria. Then, to reduce uncertainty a triangular fuzzy set was applied for weighting borders of indicators. Ultimately a Fuzzy TOPSIS algorithm was developed.
 
 
3- Discussion
According to the applied Fuzzy-TOPSIS algorithm, the anthropogenic parameters such as human activities and land use alternations are main criteria to desertification process.
Also to make a risk management pattern, attention to the pressure and state indicators must be notable. Another word, the results indicated the pressure and state indicators as main and high preference indicators for desertification risk management.
Results indicated that selection of fuzzy borders can be a reliable way to reduce uncertainty. Also TOPSIS method of decision making is a suitable tool to rank indicators.
 
4- Conclusion:
TOPSIS proved to be a cost-effective and flexible method, as it provides a screening tool to identify, prefer and weight indicators for further investigation. However, this approach is not intended to substitute a scientific analysis of the indicators based on experimental research. After ranking indicators based on expert (and policy) relevance, they have then to be transformed into operational indicators, by conducting field research where necessary, to actually develop and integrate them into structured indicator sets. Furthermore, indicators can be selected and substituted to match the specific characteristics of each region. Since the land degradation conditions are various in different regions, the method can be applied with proper adjustment, provided the principal factors affecting desertification are identified and the relevant data layers are available

کلیدواژه‌ها [English]

  • TOPSIS
  • fuzzy
  • MCDM
  • Risk Management
  • Desertification Indicators
 

اختصاصی، محمدرضا و عادل سپهر، (١٣90)، مدل‌ها و روش‌های ارزیابی و تهیه نقشه بیابان‌زایی، انتشارات دانشگاه یزد، چاپ اول: 312 صفحه

اصغرپور، محمدجواد، (1385)، تصمیم گیری‌های چند معیاره، انتشارات دانشگاه تهران، چاپ چهارم: 237 صفحه

اکبری، نعمت‌الله و کیوان زاهدی، (١٣٨٧)، کاربرد روش‌های رتبه‌بندی و تصمیم‌گیری چند شاخصه، انتشارات سازمان شهرداری‌ها و دهیاری‌های کشور، چاپ اول: 463 صفحه

سپهر، عادل، (1389)، ارائه الگوی مدیریت ریسک بیابان­زایی در شرایط عدم قطعیت، رساله دکتری (Ph.D) ژئومورفولوژی، دانشگاه اصفهان.

Ahmadzadeh, M.R., M. Petrou. (2003). Use of Dempster-Shafer Theory to Combine Classifiers Which Use Different Class Boundaries, Journal of IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol 6: 41-46

Higgs, G. (2006). Integrating multi-criteria techniques with geographical information systems in waste facility location to enhance public participation, Journal of Waste Management & Research, Vol 24: 105-117

Harris, R. (1998). Introduction to Decision Making, VirtualSalt. http://www.virtualsalt.com/crebook5.htm

Hurley W.J. (2001). "The analytic hierarchy process: A note on an approach to sensitivity which preserves rank order"; Computers & Operations Research, Vol 28.

Jamali, A.K., J. Ghodusi, and M. Farahpour. (2005). GIS and Spatial Decision Support System for Desertification Mitigation in Watershed, ACRS 2005.

Kamal M. Al-Subhi Al-Harbi. (2001). Application of the AHP in Project Management. International Journal of Project Management. Vol 19: 19-27

Kosmas, C., A. Ferrara, H. Briassouli, and A. Imeson. (1999). Methodology for mapping environmentally sensitive areas (ESAs) to desertification, In: Kosmas, C.; Kirkby, M.; Geeson, N. (eds.), The Medalus project: Mediterranean desertification and land use. Manual on key indicators of desertification and mapping environmentally sensitive areas to desertification, Project report, European Commission

Levy, J. K. (2005). Multiple Criteria Decision Making and Decision Support Systems for Flood Risk Management, Journal of Stochastic Environmental Research for Risk Assessment. Vol 19: 438-447

Min Wu. (2007). TOPSIS-AHP Simulation Model and Its Application to Supply Chain Management, World Journal of Modeling and Simulation. Vol 3 (3): 196-201

Olson D.L., D. Wu. (2005). "Simulation of fuzzy multi attribute models or grey relationships"; European Journal of Operational Research

Phua, Mui-How., M. Minowa. (2005). A GIS-based multi-criteria decision making approach to forest conservation planning at a landscape scale: a case study in the Kinabalu Area, Sabah, Malaysia, Journal of Landscape and Urban Planning, Vol 71: 207-222

Pietersen, K. (2006). Multiple Criteria Decision Analysis (MCDA), a Tool to Support Sustainable Management of Groundwater Resources in South Africa. Journal of Water Research, Vol 32 (2): 119-128

Sasilkala, K.R., M. Petrou. (2001). Generalized Fuzzy Aggregation in Estimating the Risk Desertification of a Burned Forest. Journal of Fuzzy Set and Systems, Vol 118(1): 121-137