Optimal Routing of Road Network with Emphasis on Natural Environment Parameters According to the Least Cost Pathway Algorithm and GIS
(Case Study: Delijan-Aligudarz)

Arefeh Alimohammadi 1, Alireza Ildoromi 2 *, Mir Mehrdad Mirsanjari 3, Sahar Abedian 4

1- MSc, Department of Natural Resources and Environmental Sciences, Malayer University, Malayer, Iran
2- Associate professor, Department of Natural Resources and Environmental Sciences, Malayer University, Malayer, Iran
(*Corresponding Author Email: ildoromi@gmail.com)
3- Assistant Professor, Department of Natural Resources and Environmental Sciences, Malayer University, Malayer, Iran
4- Instructor, Department of Natural Resources and Environmental Sciences, Payame Noor University, Kerman, Iran

Introduction
Road construction is one of the most important needs of different countries. To achieve development, it is necessary to use transportation methods to transport goods and services in less time and more safety. As a result, the development and creation of new roads seem inevitable, and their construction is part of infrastructure projects that have many social, economic, political, and environmental consequences. In addition, it should be noted that the selection of unsuitable routes for construction can have potentially negative consequences for the environment of a region. These negative consequences include habitat destruction, fragmentation of wildlife populations, road accidents, floods, soil erosion, landscape degradation, and increased public access to untapped natural resources, etc. Therefore, the optimal and sustainable use of the environment in road development projects is one of the most important and fundamental stages of sustainable development in optimal routing and reducing the negative effects of the environment. The Delijan-Aligudarz route is one of the important transit roads. This road passes by the Mothe Wildlife Sanctuary, which has caused serious damages to this wildlife habitat. Therefore, environmental characteristics should be considered in the routing process to reduce damages to natural resources and achieve sustainable development goals. The purpose of this study is to choose the least costly route from an environmental and economic point of view. To achieve this goal, optimal routing and GIS have been used in this study.

Methodology
In this study, 3 groups of criteria including ecological, technical-safety, and economic-social criteria and 12 sub-criteria for optimal routing were developed. Criteria include slope, altitude, land use, geology, erosion, landslide, distance from the fault, distance from protected areas, distance from
groundwater level, distance from the river, and urban and rural centers. Then the effective criteria in the GIS were digitized. Because each benchmark map has different measurement ranges and scales, the standardization process was used to standardize the measurement scales and convert them into comparable units. Criteria and constraint maps were standardized based on Fuzzy and Boolean logic, respectively. In the next stage, the AHP and WLC methods were used for weighting and integrating the criteria, respectively, and a multi-criteria evaluation map is obtained. According to this map, a friction layer was created in the GIS environment. A friction map is a raster format map in which each cell has a value that can be considered as a relative or absolute barrier to path passage. In the next step, a cumulative cost map was prepared. The cost level map shows the cost of passing from one cell to another in different directions cumulatively. Finally, the path was designed using the Least Cost Pathway Algorithm and the destination point in ArcGIS software.

Discussion

The designed and the current path were compared in terms of environmental parameters to select the path that causes less damage to the environment as the optimal path. Choosing the optimal route is a type of Multi-Criteria Decision Making. The weight of the AHP method showed that slope, distance from protected areas, and landslide sensitivity have gained the most weight, and are of the highest importance in optimal routing according to experts. The results showed that the privacy of effective environmental criteria in road construction has been observed in the designed route so that the designed route has not passed the Mooteh Wildlife Sanctuary and is more than four kilometers away, while 8.6% of the current route is located less than one kilometer from this wildlife refuge. Also, 16, 25 and 2.8% of the current route has passed through the urban, rural, and fault areas, while these environmental criteria are regarded in the designed path.

Conclusion

The results show that the designed route is much better in terms of environmental criteria than the current route. As a result, it is suggested that in road construction projects, first of all, the influential factors be identified and a suitable path in terms of the environment be designed by observing the laws and principles of the environment and using GIS.

Keywords: Least Cost Pathway Algorithm, Multi-Criteria Evaluation, GIS, Routing.

References:

مزیج‌باین: بهینه‌سازی شبکه یادگیری با تأکید بر پارامترهای میکرو‌طبیعی و بهره‌گیری از الگوریتم

کم‌هوریت‌های مسیر و سامانه اطلاعات جغرافیایی نمونه پژوهش: دلیجان - الیکودرژ

عازار علی‌محمدی، کارشناسی ارشد، دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر، ملایر، ایران
alimohammadiar890@gmail.com
علي‌رضایی، دکترای تخصصی، دانشگاه پیام نور، کرمان، ایران
idoromi@gmail.com
میرمهدی میرسنجری، استادیار، دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر، ملایر، ایران
mehrdadmirsanjari@yahoo.com
سرح عابدیان، دکترای تخصصی، دانشگاه پیام نور، کرمان، ایران
sahar.abedian1985@gmail.com

چکیده

در پروژه‌های راه‌سازی به‌منظور کاهش آثار منفی میکرو‌طبیعی و تسریع اقتصادی-اجتماعی در غرب و مرکز ایران میکرو‌طبیعی استفاده می‌شود. در این مقاله به مدل‌های مختلف الگوریتم بهینه‌سازی، میکرو‌طبیعی و میکرو‌طبیعی، دانشگاه ملایر، ملایر، ایران

کلمات کلیدی: الگوریتم کم‌هوریت‌های مسیر، بهینه‌سازی چندمعیاری، سامانه اطلاعات جغرافیایی، مسیرباین

Copyright©2021, University of Isfahan. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/BY-NC-ND/4.0), which permits others to download this work and share it with others as long as they credit it, but they can’t change it in any way or use it commercially.

Doi: 10.22108/GEP.2021.126758.1389
مقدمه

راهها به منظور پیشرفت و زیربنای توسعه، نقش اساسی و بنیادی در باروری امکانات و استعدادهای بالقوه جامعه دارد و موجب برقراری و تقویت هرچه سریع‌تر و گسترده‌تر در بخش‌هاي مختلف اقتصادی، اجتماعی و فرهنگی کشورها می‌شود (یپبات و ایبیالسینی، 1395: 1). البته در کاران این مراحل اقتصادی و اجتماعی، باید به این نکته نیز توجه داشت که انتخاب مسیرهای نامناسب برای احداث راهها ممکن است پایده‌های منفی بالقوه ای برای محيط زیست Ware et al., 2015: 12105; Laurance et al., 2015: 1086; Ascensão et al., 2016: 12; Chen and Bagli et al., 2017: 3205 تا به این‌که تشکل جمعیت حیات وحش و از بین رفتن پویای آنها (Collinson et al., 2014: 3060; Son et al., 2016: 33 تأثیرات نانویه با انرژی دسترسي مرمد به منابع طبیعی بکر (Koprowski, 2016: 33 و نظارت انست. در این رابطه بسیار مهم است که تمام مراحل طراحی و ساخت شبکه‌های جاده‌ای به روی انجام شوند که با ارزش‌های محيط‌زیستی و مدیریت پایدار سازگار باشد (Enache et al., 2011: 33).

از دیدگاه محيط‌زیستی، بهترین مکان استقرار برای یک نوع کاربری، مکانی است که از آن کاربری کمترین بار و فشار به محیط وارد و خود کاربری کمترین آسیب یا فشار را از جانب تغییرات محیط‌زیستی ناشی از استقرار خود در مکان مزبور متحمل شود (بهرام سلطانی، 1387: 79). در این زمینه، در طراحی جاده‌ای لازم است با استفاده از GIS و MSBI روش شیوه خودکار در تلقیف با تصمیم‌گیری چند‌عاملگان در محیط‌زیستی به شیوه خودکار در تلقیف با تصمیم‌گیری چند‌عاملگان در محیط‌زیستی با مشتری به روش عمومی برای ارزیابی و جمع‌بندی بسیاری از معاورها که منظور بانک راحل به‌هنه است (Rinner and Malczeweski, 2002; Guarini et al., 2012). در این زمینه در پیشرفت پژوهش‌ها به استفاده از روش MSBI روش به شیوه خودکار در تلقیف با تصمیم‌گیری چند‌عاملگان به منظور کاهش آسیب‌رسانی به منابع محیط‌زیستی توجه شده است؛ از اجمله:

آنگی و همکاران (2017) در پژوهشی به منظور مسیر‌رایانه بهینه از الگوریتم کوتاه‌ترین مسیر در تلفیق با روش‌های تصمیم‌گیری چند‌عاملگان استفاده کرده. نتایج نشان می‌دهد مسیر بهینه افزایش محیط‌زیستی ۹۰ کیلومتر طولانی‌تر از مسیر مهندسی است. آنها دریافتند این مسئله با معنی هزینه‌های برتر نیست. زیرا مراحلی که به حفظ محیط‌زیستی مناسب است، ممکن است جایگزین یک فشارهای کشور به مسیر مهندسی کوتاه‌تر است. باکلی و همکاران (2011) برای مسیر‌رایانه خطوط انتقال نیرو از معاورهای محیط‌زیستی و انتقال انرژی کشور و مسیر بهینه به‌منظور طول مناسب و میزان قدرت استفاده بهتر از مسیر خطوط انتقال نیروی فعال است.

1. Ngunyi et al.
2. Bagli et al.
سیاسی‌سازی‌های نهضت‌های اجتماعی از نظر پژوهشگران و سیاست‌مداران بسیار متفاوت است. یکی از نهضت‌های اجتماعی شاخص، اقدامات در زمینه مهاجرت و کمک‌رسانی به زائران جهانی است. این نهضت‌ها برای تحقق نژادنداختگی و توسعه روابط بین‌المللی دست کمیده‌اند.

در این راستا، اقداماتی به‌خوبی اجرا شده‌اند که بهبود وضعیت زائران جهانی را به‌صورت واقعی بهتر نمایش می‌دهند. این اقدامات شامل توسعه شبکه‌های ارتباطی، افزایش ارزش‌های اجتماعی و اقتصادی، و بهبود وضعیت زائران جهانی در شرایط خاص می‌باشد.

در نهایت، این اقدامات به‌وسیله معاونین و مسئولان در هر سطح اجرایی انجام می‌شود و به بهبود وضعیت زائران جهانی اجرایی و بیانک می‌گردد.
روش‌شناسی پژوهش
متغیرها و شاخص‌های پژوهش

Bagli et al., 2011; Ngunyi et al., 2017; Effat and Hassan, 2013) و داخلي (سلمان‌ماهینی و همکاران, 1394; ابراهيمی پور و همکاران, 1386) نظر افراد خبره و قوانین و شيوه‌نامه‌های محیط‌زیستی، معیارهای محیط‌زیستی تأیید گردان در منطقه‌ای شبکه ی حیاتی در سه گروه شامل آکوئولوژیکی، اجتماعی اقتصادی و فنی یا نیز در جدول 1 تدوین شد. با تعیین مجموعه‌ای از معیارها، نیاز

شکل 1. موقعیت جغرافیایی محدوده پژوهش

Figure 1. Geographical location of the study area
است هر معیار بهصورت یک‌جا نشان‌داده می‌شود که از اینکه در پایگاه داده‌های مبتنی بر GIS نشان داده شود. لایه‌های شیب و جهت شیب از مدل رقومی ارتقاء منطقه با ابزارهای سطح ۲۰۰۰ متری استخراج شدند. لایه‌های شیب‌نمایی و گسل از لایه‌های زمین‌شناسی کشور تهیه شد. لایه‌های زمین‌شناسی، راه‌ها، ارتباط‌های شهری و روستایی از روی نقشه توبوگرافی تهیه شد. نشان‌هایی از تابی اراضی، بوش‌های گیاهی و حساسیت به فرسایش نیز از ارائه‌نگاره‌های مبتنی بر GIS نشان داده شدند.

جهان ۱. معیارهای استفاده‌شده در مسیربازی، نویسندگان: ۱۳۹۸

<table>
<thead>
<tr>
<th>گروه</th>
<th>زیرگروه</th>
<th>معیار</th>
<th>اطلاعات مورد نیاز</th>
<th>دلیل اهمیت معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>شکل‌زمین</td>
<td>زمین‌شناسی اکولوژیکی</td>
<td>ارتفاع</td>
<td>ارتفاع از سطح دریا</td>
<td>کاهش آثار زیان‌بران محیط‌زیستی، کاهش حجم خاک‌برداری</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>درصد شیب چوبی</td>
<td>کاهش فرسایش، خطر کم وقوع زمین‌لغزش، حفظ و پایداری خاک</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>انواع واحدهای سنجش</td>
<td>کاهش تخریب سطح زمین، ارتفاع گزارش در خاک و...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>طبیعت‌نیزدی فرسایش خاک</td>
<td>تخریب چشم‌انداز برای پیاده‌نیزدی فرسایش و تشویق</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>رودخانه</td>
<td>کاهش افرشته‌آبی و فرعی زمین‌لغزشی</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>سطح آب چاه‌ها</td>
<td>کاهش نفوذ موارد زاند نفتی، کاهش آلاودگی آب زیرزمینی</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>حفاظت از محیط‌زیست برای اکولوژیستهای محیط‌زیستی</td>
<td>حفاظت از منابع طبیعی اراضی کشاورزی، جنگلی</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>اطلاعات توصیفی از مسیرهای شهری و روستایی و مناطق مسکونی</td>
<td>حفاظت منابع طبیعی و کاهش هزینه‌ها</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>محدوده جمعیت</td>
<td>کاربری زمین اراضی</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>محدوده حفاظت</td>
<td>کاربری زمین اراضی</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>فن و ایمنی</td>
<td>تخریب جاده‌های ارتباطی، تخریب اراضی و مناطق مسکونی، فرسایش خاک و انتقال حجم زیاد رسدوب</td>
</tr>
</tbody>
</table>

Table 1. The criterion used in road routing (Authors, 2019)
تليفیق معیارها بر اساس روش ارزیابی چندمعیاره

با توجه به اینکه معیارهای بررسی شده، میزان‌های اندازه‌گیری متفاوتی دارند، معیارها باید بر مبنای و بدون برداری تأثیر از این میزان‌ها بررسی و بر پایه‌ی آنها به واحدهای قابل مقایسه‌ای از روش فاصله و مدل پیوند استفاده شد.

استانداردسازی معیارها در منطقه بزرگ در مقیاس بین صفر تا 255 صورت گرفت. برای انجام منطق فازی، چهار نوع تابع عضویت (پوابع S شکل، خطی و تعریف‌شده توسط کاربر) تعیین شده است. نوع محتوی عضویت فازی به شکل یک‌نواحی اف‌اچ‌ای، یک‌نواحی کامل و متقارن است که هر فازی کردن لایه‌ها نقشه باید موضوع دست‌کم 2 تا 4 نقطه، d و c باشد.

در سناریوی حادثه استانداردازی ها، توجه به مقررات سازمان محیطزیست و مرور مقالات تعیین شد؛ همچنین نشانه‌های دو پهلو ویژه ویژگی‌های محیطزیستی و اقتصادی به هنگام قابلیت سایه‌گیری سایر نوارهای ارزش صفر یا دارند، ارزش صفر داده شود.

همچنین نیاز است میزان اهمیت هر معیار نسبت به دیگری سنجیده شود. در این پژوهش اهمیت نسبی هر کدام از معیارها با استفاده از فرآیند تحلیل سلسله‌ریتمی تعیین شد. روش یادآورساز مشابه بهره‌مندی است؛ تشکیل ماتریس مقایسه دوپایی با درجه اهمیت یک که نه (جدول 2) برای تعیین میزان اولویت‌های نسبی دو معیار، محاسبه وزنه‌های معیار و تعیین نسبت تفاوت (CR). اگر میزان CR از 0.1 کمتر باشد، مقایسه‌ها پذیرفته و وزنه‌های محاسبه‌شده IDRISE TerrSet استخراج می‌شود (فیشر، 1387: 125). در این پژوهش، فرآیند تحلیل سلسله‌ریتمی در نرم‌افزار انجام شد.

جدول 2. میزان نسبی معیارها بر اساس مقایسه زوجی

<table>
<thead>
<tr>
<th>معیار به‌پایین</th>
<th>ترخیص فوق العاده</th>
<th>ترخیص خیلی زیاد</th>
<th>ترخیص زیاد</th>
<th>نسبتاً مرجح</th>
<th>کمتر مرجح</th>
<th>درجه اهمیت</th>
<th>توصیف</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6.4.2</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>ارزش‌های پیشین</td>
</tr>
</tbody>
</table>

در کم بیان نیاز است نشان نشده با یک‌دیگر براساس روش ترکیب خطی وزنی \\(^1\) اغماش شوند. این روش بر پایه‌ی مفهوم مین‌گین وزنی استوار است. تحلیل‌گر مستقیماً بر اساس اهمیت نسبی هر معیار، وزن‌هایی به معیارها می‌دهد. سپس با ضرب کردن وزن نسبی در مقدار آن ویژگی، یک مقدار نهایی برای هر گزینه براساس رابطه 1 به دست می‌آید. پس از مشخص‌سازی مقدار نهایی هر گزینه، گزینه‌ای که بیشترین مقدار را داشته باشد مناسبترین گزینه برای هدف مدل‌نظر خواهد بود (برجهای گالری و نسبت، 332: 1387)؛ سپس با جمع نتایج گزینه‌ها و ضرب آن در حاصل ضرب محدودیت‌ها، نشان قابلیت برای توسعه شبکه جاده‌ای به دست می‌آید.

\[S = \sum WiXiP \]

\(^1\) Weighted Linear Combination (WLC)
دیواره علی محمدی و همکاران

ایجاد سطح هزینه با اصطکاک

سطح هزینه به سطحی می‌گردد که مقدار هر سلول آن نشان‌دهنده میزان مقاومت یا هزینه غیاب از این سلول است.

واحدهای سلولی این سطح ممکن است هزینه زمان، مسافت و ریسک باشند: اما مسئله مهم، میزان مقاومت هر سلول است که میزان ارزش آن از سلول را مشخص می‌کند (Collischon and Pilar, 2000: 493). نقشه اصطکاک‌ها، نقشه‌ای است که در آن هر سلول مقدار عضوی در بازه صفر تا 25 دارد که مانعی نسبی با مطلق دریابی عبور مسیر به شمار می‌رود (ستوده و همکاران، 1386: 79).

ایجاد سطح هزینه تجمعی 1

در مرحله بعد با استفاده از نقشه اصطکاک و تعیین نقطة مبدا، نقطه تجمعی تجهیز شده و سطح هزینه تجمعی در نرم‌افزار COST مقدار عبور از یک سلول به سلول دیگر براساس پلاراس فاصله، زمان، هزینه و... است. نقطه سطح هزینه Tomlin, 1999) است که هر سلول تجهیز شده که در نرم‌افزار IDRISI TerrSet درحقیقت تلاینی برای تعیین سلول با کمترین هزینه است؛ این کار یک فرآیند با عملیات تکراری است که از نقطه شروع آغاز می‌شود و هدف آن، رسیدن سلول‌های سطح براساس هزینه تجمعی حرکت از نقطه شروع است. این کار تا زمانی ادامه می‌یابد که همه سلول‌های هزینه‌دار شوند (ابراهیمی‌پور و همکاران، 1384: 5).

طراحی مسیر با کمترین هزینه 2

در مرحله آخر، با استفاده از نقطه مقصود و لایه هزینه تجمعی و با کارگیری تابع Pathway، پیمایش مسیر به‌صورت خودکار ایجاد می‌شود. این تابع از مقصود به مبدأ و پس از حرکت می‌کند و پیکسل‌ها با کمترین هزینه تجمع را با مانند جهت حرکت در نظر گرفت (سلطان‌نامه و کامیابی، 1388: 182؛ عابدیان، 1388: 18) در این پژوهش با استفاده از پیمایش مبدأ و نقطه اصطکاک، نقطه هزینه تجمعی توجه و سپس با روش الگوریتم کوتاهترین مسیر و استفاده از نقطه مقصود، مسیر به هنگام طراحی شد.

1. Friction
2. Accumulated Cost Surface
3. Least Cost Pathway
دانستنی‌ها

استانداردسازی میزان‌ها

در این پژوهش، فرایند استانداردسازی نقشه‌های میزان براساس دو منطق فازی و یک‌بندی صورت پذیرفت است.

به‌منظور قریب‌ترین مقدار میزان براساس پیکسل‌ها و درجه‌ی ارزش‌گذاری شرکت‌های ۲۰۵، ۲۰۶ و ۲۰۷ درجات بالای عضویت (ارزش ۲۲۵) شناسانده متوسط نسبت بین‌پیکسل به دلیل کاهش هزینه‌های اقتصادی و محیطی‌پسی بیان می‌شود. نمودار ۳ و ۴ مقدار استاندارد نوع تابع فازی برای استانداردسازی میزان‌ها پیوسته و میزان‌ها گسترش در منطق فازی را نشان می‌دهد. در این پژوهش مقدار آستانه‌ی میزان‌ها پیکسل‌هایی که ارتقای و فاصله‌ی سطح آب یا موجودی با استفاده از نظر کارشناسان مهندسی راه و ترابری و مرور معنی‌دار داخلی (آفتابی‌ها و همکاران، ۲۰۱۳: سلیمان‌زاده و همکاران، ۲۰۱۴) و میزان‌ها فاصله از چهاربخش، مناطق حفاظت‌شهر و مناطق مسکونی، فاصله از شهر و روستا و فاصله از گل براساس قوانین و شیوه‌های محیط‌پسی (شماره ۲۳۲) جغرافیا و برنامه‌ریزی، که در آن مورد استانداردسازی، شرکت‌های گسترش و شکر درک و تابعی از گل براساس قوانین و شیوه‌های محیط‌پسی (شماره ۲۳۲) جغرافیا و برنامه‌ریزی (۱۳۸۹: خوشنویس نیا) تردد نمی‌نماید. میزان‌ها گسترش منطقه نشانه‌ی براساس رهبری‌دهی فیض نیا (۱۳۸۵) طبقه‌بندی و استاندارد شده: همچنین استانداردسازی میزان‌ها

ویژه‌گزاری: اراک و فرسایش براساس نظرات افراد خبره و استاندارد راهنمای دش‌گرایه است.

در این پژوهش از دو تابع عضویت کاهشی خلی و افزایش خلی استفاده شد: برای نمونه‌ی یکی از میزان‌ها مؤثر در مسیریابی، شرکت زمین است که تابع عضویت فازی آن از نوع یک‌بندی خلی و قرن کاهشی است و دامنه آرزش آن در مسیریابی به ۳۵ درصد در نظر گرفته شده است. براساس نظر کارشناسان و ترابری شیب‌های ۱۰ درصد به دلیل کاهش هزینه‌های گیرنده‌ردی و تسلیح در یک طبقه قرار می‌گیرند و در بالاترین حد دلیل بودن (ارزش ۲۵۵) قرار دارند. درجه‌ی متوسط شیب از ۵ درصد تا بخش‌هایی که در شرایط حاد خود می‌رسد که ارزش صفر برای آن در نظر گرفته شد. با توجه به بهره‌داری راهبردی منطقه، شرکت‌هایی از ۱۲ درصد براساس نظر کارشناسان به دلیل افزایش هزینه‌های اقتصادی و محیط‌پسی توذیه‌ی نداشته و معادل صفر در نظر گرفته شده است (شکل ۲).

یکی دیگر از میزان‌ها مؤثر در مسیریابی، گسل است که خطر لرژه‌هایی و مشکلات ساخت و تغییرات را برای راه‌ها به وجود می‌آورد. در این پژوهش به‌منظور استانداردسازی، نقشه‌ی فاصله از گسل به تابع براساس آسیب‌نامه ۱۸۰۰ وزارت راه و شهرسازی، حاشیه‌های ۱۰۰۰ متری در نظر گرفته شد (مرکز تحقیقات ساخت و مسکن، ۱۳۸۴). تابع عضویت فازی از نوع یک‌بندی خلی و قرن افزایشی است که میزان متوسط افزایش آن ۱۰۰۰ متر (ارزش ۲۰۷) تا بالاترین فاصله‌های اقلیدسی در نقشه به‌صورت خلی از ارزش ۲۵۵ افزایش می‌یابد (شکل ۳): همچنین در شکل‌های ۴ و ۵ درصد نمونه‌های افزایشی حاصل از استانداردسازی میزان‌ها نشان داده شده است.
جدول 3. استانداردسازی معیارهای پویه بر اساس منطق فازی (نویسندگان، ۱۳۹۸)

<table>
<thead>
<tr>
<th>شکل و نوع تابع عضوی</th>
<th>محدودیت</th>
<th>مطلوبیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاهش-خیب</td>
<td>۱۲ درصد هبلا</td>
<td>۱۲ درصد مطلوبیت و ۵ تا ۱۲ درصد مطلوبیت هبلا</td>
</tr>
<tr>
<td>افزایش-خیب</td>
<td>۲۴۰۰ متر هبلا</td>
<td>۷۵۰ متر هبلا</td>
</tr>
<tr>
<td>افزایش-خیب</td>
<td>۵۰۰ متر هبلا</td>
<td>۲۵۰ متر هبلا</td>
</tr>
</tbody>
</table>

جدول 4. استانداردسازی گسترشی گستره بر اساس تابع User define (نویسندگان، ۱۳۹۸)

<table>
<thead>
<tr>
<th>نام طبقه</th>
<th>معیار</th>
<th>نام طبقه</th>
<th>معیار</th>
</tr>
</thead>
<tbody>
<tr>
<td>کشاورزی و گل‌زارها</td>
<td>۱۶۰</td>
<td>کشاورزی و گل‌زارها</td>
<td>۱۶۰</td>
</tr>
<tr>
<td>جنگل</td>
<td>۱۰</td>
<td>جنگل</td>
<td>۱۰</td>
</tr>
<tr>
<td>مراتب درمان</td>
<td>۳۶</td>
<td>مراتب درمان</td>
<td>۳۶</td>
</tr>
<tr>
<td>۱۱۰</td>
<td>مراتب درمان</td>
<td>۱۱۰</td>
<td></td>
</tr>
<tr>
<td>۱۸۰</td>
<td>مراتب درمان</td>
<td>۱۸۰</td>
<td></td>
</tr>
<tr>
<td>اراضی بایر</td>
<td>۲۵۰</td>
<td>اراضی بایر</td>
<td>۲۵۰</td>
</tr>
<tr>
<td>مناطق مسکونی</td>
<td>۰</td>
<td>مناطق مسکونی</td>
<td>۰</td>
</tr>
<tr>
<td>پهنه‌ها با لغزش کم</td>
<td>۲۵۵</td>
<td>پهنه‌ها با لغزش کم</td>
<td>۲۵۵</td>
</tr>
<tr>
<td>پهنه‌ها با لغزش متوسط</td>
<td>۲۱۵</td>
<td>پهنه‌ها با لغزش متوسط</td>
<td>۲۱۵</td>
</tr>
<tr>
<td>پهنه‌ها با لغزش زیاد</td>
<td>۱۳۰</td>
<td>پهنه‌ها با لغزش زیاد</td>
<td>۱۳۰</td>
</tr>
<tr>
<td>فرسایش کم</td>
<td>۲۵۵</td>
<td>فرسایش کم</td>
<td>۲۵۵</td>
</tr>
<tr>
<td>فرسایش متوسط</td>
<td>۱۷۵</td>
<td>فرسایش متوسط</td>
<td>۱۷۵</td>
</tr>
<tr>
<td>فرسایش زیاد</td>
<td>۱۰۰</td>
<td>فرسایش زیاد</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>فرسایش خیلی زیاد</td>
<td>۲۵</td>
<td>فرسایش خیلی زیاد</td>
<td>۲۵</td>
</tr>
</tbody>
</table>

Table 3. Standardization of continuous criteria based on fuzzy logic (Authors, 2019)

Table 4. Standardization of discrete criteria based on User define (Authors, 2019)
شکل ۲. استانداردسازی معیار شیب به همراه تابع عضویت

Figure 2. Standardization of slope criterion with the membership function

شکل ۳. استانداردسازی معیار فاصله از گسل به همراه تابع عضویت

Figure 3. Standardization of the distance from the fault criterion with the membership function
Figure 4. An example of constraint maps based on Boolean logic; A. Boolean rural areas; B. Boolean elevation; C. Boolean fault; D. Boolean protection areas
شکل ۵. نمونه‌ای از نقشه‌های میانی بر اساس منطق فازی:الف. فازی فاصله از رودخانه؛ ب. فازی مناطق شهری؛ ج. فازی زمین‌شناسی؛ د. فازی کاربری اراضی

Figure 5. An example of criteria maps based on fuzzy logic; a. fuzzy distance from the river; b. fuzzy urban areas; c. fuzzy geology; d. fuzzy land use
وزن‌دهی می‌باشد

در این پژوهش، میانگین میزان سازگاری ۰/۰ به دست آمد که چون کمتر از ۱/۰ بود، صحت آن تأیید شد.

همان‌طور که در جدول ۵ دیده می‌شود، بیشترین ضریب وزنی به معیار شیب (۰/۱۰۹) اختصاص یافت و معیارهای فاصله از مناطق حفاظت‌شده (۰/۱۰۱۷) و منطقه شکار ممنوع (۰/۸۸) به ترتیب در اولویت‌های بعدی قرار گرفتند.

جدول ۵. وزنهای حاصل از روش مقایسه زوجی (نویسندگان، ۱۳۹۸)

<table>
<thead>
<tr>
<th>رده</th>
<th>معیارها</th>
<th>وزن</th>
<th>رده</th>
<th>معیارها</th>
<th>وزن</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>شیب</td>
<td>۸</td>
<td>۲</td>
<td>شده‌فاضل‌های منطقه حفاظت</td>
<td>۷۶</td>
</tr>
<tr>
<td>۲</td>
<td>فاصله از شهر</td>
<td>۶۷</td>
<td>۳</td>
<td>شده‌فاضل‌های منطقه شکار ممنوع</td>
<td>۵۵</td>
</tr>
<tr>
<td>۳</td>
<td>فاصله از روستا</td>
<td>۶۵</td>
<td>۴</td>
<td>میزان شناسی</td>
<td>۸۸</td>
</tr>
<tr>
<td>۴</td>
<td>شده‌فاضل‌های منطقه شکار ممنوع</td>
<td>۷۷</td>
<td>۵</td>
<td>فاصله از کسل</td>
<td>۶۳</td>
</tr>
<tr>
<td>۵</td>
<td>ارتفاع</td>
<td>۵۴</td>
<td>۶</td>
<td>فاصله از سطح آب‌های زیرزمین</td>
<td>۵۰</td>
</tr>
<tr>
<td>۶</td>
<td>کاربری اراضی</td>
<td>۴۰</td>
<td>۷</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

توجه می‌باشد برای روش ارزیابی چندمعیاره پس از محاسبه وزن معیارها برای تلفیق با سایر معیارها، محدوده‌ها و وزن معیارها، از روش ترکیب خطی وزن‌دهی استفاده شد و نشانه مطلوب‌ترین منطقه بهره‌مند به دست آمد (شکل ۶). دامنه ارزیابی مطلوب‌ترین منطقه بین ۱۰ تا ۲۱۲ است؛ در نواحی مرکزی محدوده بیشترین میزان مطلوب‌ترین برای مسیریابی بهینه و در نواحی جنوبی آن به دلیل وجود پناه‌گاه نهایی و حش و ضریح، در نواحی شمالی و شرقی آن به دلیل شیب و ارتفاع زیاد و در نواحی غربی به علت وجود گسل‌ها و احتمال زمین‌لغزش زیاد کمترین مطلوب‌ترین برای مسیریابی بهینه مشاهده شده است.

شکل ۶. نشانه‌های یوک تسندهای در منطقه پژوهش

Figure 6. Multi-criteria evaluation map in the study area.
تعیین مسیر بهینه روی سطح شبکه

نقشه اصطکاک در یک فرمت رستری تهیه شده که در آن هزینه حرکت از یک سلول به سلول دیگر نشان داده می‌شود (شکل 7الف). پس از تولید نقشه اصطکاک، تعیین نقطه مبدأ و با کمک تابع هزینه، نقشه هزینه تجمعی ایجاد شد (شکل 7ب). در نهایت با استفاده از نقاط مبدأ و مقصد و ولایه هزینه تجمعی و با به کارگیری تابع Pathway بهینه طراحی شد (شکل 7ج).

شکل 7. تعیین مسیر بهینه در منطقه پژوهش:الف. نقشه اصطکاک؛ ب. نقشه هزینه تجمعی؛ ج. نقشه مسیر طراحی شده و مسیر فعلی

Figure 7. Determining the optimal route in the study area; A. friction map; B. cumulative cost map; C. Designed route map and current route
مقایسه مسیر طراحی شده و مسیر اصلی

پس از طراحی مسیر درGIS، مسیر طراحی شده با مسیر فعلی از نظر پارامترهای میکروژئوپلیکومپلکس است. این مسیر را به عنوان قطبی به میکروژئوپلیکومپلکس وارد می‌کند و به‌عنوان مسیر بهینه انتخاب کرده و این مسیر به‌عنوان دیدگاه در این پژوهش انتخاب کم‌هزینه‌ترین مسیر از دیدگاه میکروژئوپلیکومپلکس و اقتصادی است.

معیارهای مهم در مقایسه مسیر طراحی شده با مسیر اصلی براساس نظرات کارشناسان شیپ، ارتفاع، فاصله از کسل، فاصله از شهر، فاصله از روستا، فاصله از منطقه حفاظت‌شده و فاصله از روستاهای است. براساس پرسی انجام شده، جاده طراحی شده حیات‌های میکروژئوپلیکومپلکس می‌تواند بهبود به شمار می‌رود که هدف در این پژوهش، انتخاب کم‌هزینه‌ترین مسیر از دیدگاه میکروژئوپلیکومپلکس و اقتصادی است.

۲۵ درصد از طول جاده فعلی فاصله‌ای کمتر از ۷۵۰ و ۱۰۰۰ متر از مناطق روستایی و شهری دارد. همگنی در رعایت فاصله از حرمی رودخانه‌ها با توجه به ناحیه پراکنش و توسعه رودخانه‌ها در بخش مرکزی منطقه، عبور از آن ناگزیر روی می‌دهد. اما با دیگر شرایط مبتنی بر منظور کاهش آلوگه‌های میکروژئوپلیکومپلکس، کمترین میزان عبور روی می‌دهد. براساس نتایج ۲/۲ درصد از مسیر طراحی شده در حیات ۱۵۰ متری رودخانه عبور می‌کند. در حالی که برای مسیر فعلی این میزان حدود ۴/۲ درصد است؛ همچنین مسیر طراحی شده به‌هیچ وجه از پناهگاه حیات وحش موتی عبور نکرده است و در فاصله‌ی بیش از ۴ کیلومتری آن قرار دارد؛ در حالی که ۴/۷ درصد از طول مسیر فعلی در فاصله کمتر از ۱۰۰۰ متری از این منطقه حفاظتی قرار گرفته است.

شیب و ارتفاع مسیر طراحی شده و مسیر کمتر است؛ يعني مسیری که براساس معیارهای میکروژئوپلیکومپلکس طراحی شده از مناطق با ارتفاع و درصد شیب زیاد می‌تواند کمتر عبور کرده است که در نتیجه باعث کاهش وقوع خطر زمین‌لغزش و فرسایش می‌شود. همچنین مسیر طراحی شده به‌هیچ وجه در فاصله ۱۰۰۰ متری از گل‌ها طراحی نشده است; این در حالی است که ۲/۸ درصد از طول مسیر فعلی در فاصله کمتر از ۱۰۰۰ متری گل‌ها قرار دارند. نتایج نشان می‌دهد لحاظ کردن معیارهای میکروژئوپلیکومپلکس و استفاده از قابلیت‌های GIS و ویژگی‌های که به‌عنوان مسیر باعث شده است مسیر طراحی شده از لحاظ ویژگی‌های میکروژئوپلیکومپلکس و همچنین به لحاظ طول مسیر و هزینه‌های اقتصادی نسبت به مسیر فعلی بهتر باشد.

![گراف مقایسه مسیر طراحی و فاصله‌ی از روستا](chart.png)
شکل 8 مقایسه مسیر طراحی شده و مسیر فعلی براساس معیارهای محیطی‌زمینی

Figure 8. Comparison of designed route and current route based on environmental criteria
وژنه‌های حاصل از روش مقایسه‌زوجی در مسیر‌سایپ بهبهان نشان می‌دهد معمارهای شیب، فصل‌های مناطق
حفاظت‌شده و حساسیت‌های منابع تریبیشن ورن را کسب کرده‌اند و بیشترین اهمیت را در این فعالیت
از نظر کارشناسان دارند. مکالم به عنوان اسپیت‌لرزِر دامنه‌های نسبی به فرسایش، ایجاد خطر و نیاز به عملیات
خاکداری و خاکپزی در مسیر‌سایپ بهبهان اهمیت زیادی دارد. سلامان‌عسایی و همکاران (۱۳۹۴) و ساری و
سن (۲۰۱۷) در پژوهش‌های خود این مسئله را مربوط به ترویج و در نظر گرفتن مهندسی مناطق حفاظت‌شده به دلیل
دارش نقش حیاتی در بقای اکوسیستم‌ها و تأثیر زیست‌گاه‌های تعداد زیادی از گونه‌های گیاهی و جانوری و
ملاحظات
قانونی به‌نتیجه‌های مهم دوم در نظر گرفته شده است.
نتیجه مقایسه‌مزایای طراحی‌شده و مسیر مفهومی نشان می‌دهد در مسیر طراحی‌شده، حینی تمامی معمارهای مؤثر
محیط‌زیستی در جاده‌سازی رعایت شده است. کل سفیدی و همکاران (۱۳۹۵) این کنار در تبعین مسیر احداثشده
به عواملی که اینجا ترک و رودخانه‌ها، دسترها به ماده‌های جمعی و تهویه‌گرایی توجه بیشتری شده و
مسیر حاصل از عواملی زنده‌دهی دانش‌پایا و وضعیت مناسب‌تری در تایین بیشتری ممکن است بسیار احداثشده
به روش دستی دارد. همچنین ترکیب پژوهش سلامان‌عسایی و همکاران (۱۳۹۴) با نتیجه این پژوهش هم‌سوی است. آنها
معتقدند جاده طراحی نشان می‌شود راک نسبت به زیرکه‌ها از نظر کارشناسان نواحی، تهیه و روش‌بندی عبور و از همگی
منطقه حساس محیط‌زیستی نورنگی می‌کند. درنتیجه هرچه که یک جمعیت منطقه‌ای به‌دست آید، مطلوب اطلاعاتی است.
به دلیل رعایت حریم‌ها و کاهش آثار نامطلوب محیط‌زیستی کمتر است.

به عنوان نتایج پژوهش، سریع‌زاده‌ملی و همکاران (۱۳۹۳) در جایگاه سه‌سایپ طراحی‌شده به شیوه خودکار از‌لحاظ
محیط‌زیستی به‌مترات قویتر از مسیرهای طراحی‌شده با روش دستی است.

نتیجه‌گیری (۱۴و۸) در پژوهش‌های کنار داده شده بیان می‌کند که حاویت در تغییر مسیر دارد؛ به‌ین ترتیب ترین نقش را دارد و محدوده مسیر برآماس این عوامل محدود‌کننده و با در نظر
گرفتن کوتاه‌ترین فاصله تبعین می‌شود.

نتایج پژوهش عابدیان (۱۳۸۸) و سریع‌زاده‌ملی و همکاران (۱۴و۸) نیز مورد این مطلوب است که روشهای ارزیابی
چندبعض‌هه و در تحقیقی که خاکپزی ترین مسیر به روش مایل به دست‌رسی با کاهش دهیده پراکن‌اند آنها نقش مهمی در
تغییر مسیر دارد؛ به‌ین ترین نقش را محدود و محدوده مسیر برآماس این عوامل محدود‌کننده و با در نظر
گرفتن کوتاه‌ترین فاصله تبعین می‌شود.

نتیجه‌گیری

به دلیل اینکه در فرآیند مسیر‌سایپ پارامترهای کمی و کیفی مختلف عملی مستقیل از یکدیگر نبستند و بر هم تأثیر
مقاول‌گر، لازم است از روشهای ارزیابی چندبعض‌هه به‌عنوان روشهای پیشین نصب خود بر روی کاهش GIS

1. Sari and Şen
2. Suleiman et al.
نتایج نشان دادند در مسیریابی شبکه جاده‌ای استفاده از GIS و روش‌های ارزیابی صندلی‌داری و الگوریتم کوتاه‌ترین مسیر می‌تواند در مسیریابی براساس اصول م Playground و GIS و الگوریتم کوتاه‌ترین مسیر، مسیریابی صندلی‌داری و GIS با مسیر اصلی مقایسه شد. مقایسه مسیر تعیین شده به روش الگوریتم کوتاه‌ترین مسیر و استفاده از الگوریتم تجربه و نشان داد با استفاده از این روش، امکان دستیابی به مسیر بهینه وجود دارد و جاده طراحی شده در این پژوهش به نحوی است که امکان دستیابی به هدف محدود را فراهم می‌کند؛ بنابراین استفاده از این روش برای مسیریابی نتایج قابل قبولی ارائه می‌دهد.

براساس بررسی های انجام شده، جاده طراحی شده به میزان کمتری از موانع نسبی ظرفیت و شرایط مادی، سازمان، سازمان کارخانه‌ای، کارخانه‌ای و پارک‌های تفریحی و تفریحی در شهر تهران، نوزده، ۱۳۸۴، داخلی و غرب. بررسی مورد تأیید است: بنابراین مسیر طراحی شده از لحاظ محوطه‌سوزی و آلودگی مکانیکی به مرتبه اول، همچنین حدود آستانه‌ها در طراحی پیشنهادی با توجه به قوانین و مقررات سازمان مسیریابی و تعداد، پژوهشگاه و تحقیقات اقتصادی و افزایش ایمنی می‌شود.

منابع
ایبراهیمی پور، احمدرضا، تیموریان، کتابورن، آل‌شیخ، علی‌اصغر، (۱۳۸۴). مسیریابی خطوط انتقال آب با استفاده از GIS و الگوریتم ژنتیک. مقالات سومین همایش سیستم اطلاعات مکانی، تهران، سازمان نقشه‌برداری کشور. بیات، روح‌الله، ابولحسنی، سجاد. (۱۳۹۵). ژئوشناسی شیکاگو جاده‌ای بر تسویه اتصال. اولین همایش بین المللی انسجام مدیریت و اتصال در تسویه شهری، تبریز. پرچبکار، اکبر، غفاری گیلاندنی. (۱۳۸۵). سامانه اطلاعات جغرافیایی و تحلیل تصمیم چندمعیاری، چاب اول، شهر تهران، انتشارات سمت.

در وسیله صفحه صنعت، علی‌اصغر، احمدرضا، مهد، مهدم، مجید، ابولقاسمی، شیرین. (۱۳۸۴). مسیریابی براساس اصول GIS مطبوعات موردن و الگوریتم کوتاه‌ترین مسیر تعیین شده به روش طراحی، جاده‌ای بر تسویه تهران، مرجع منابع و تحقیقات شهرسازی و معماری ایران. رافتی، نیما، نصرالله، عابدی، امید، شنبه‌ای، شعبان. (۱۳۸۵). تعیین روش مناسب پیشنهادی مقدار مسیر جاده‌ای دشت‌های جنگلی و کوهستانی با استفاده از GIS. فصلنامه تحقیقات جنگلی و صنعت ایران، دوره ۱۴، شماره ۳، ۱۳۸۴-۱۳۸۵، ۲۵۷-۲۵۴.
دانشگاه طبیعی کاربردی آمیش اهان

40 الگوریتم ایران، مناطق منظوره، تلفات ویرایش جهات فصلنامه راه، انسانی طبیعی بهان، فصلنامه اکوسیستم اکراترین، سایمای افشاری، عباسی، دیادگاه فصلنامه نمونه، علمی اولین، نامه (دربرابر اتفاقات ویژنگاهی مناطق حفاظت شده اصفهان، هفتمین کنفرانس بین المللی توسعه پایدار و عمران شهری، اصفهان.)

ستوده، احمد، دروسی صفت، علیاصغر، محیط تصمیم‌گیری، موردی، القای معاوضه بین المللی تروئزه پایدار و عمران شهری اصفهان.

G از استفاده از GIS با استفاده از مطالعه موردی: راه آهن کاربردی

سلطانی، عبدالرضا، عبدالرضا، سیام، سیام، قهرمانی، خراسانی، نعمت الله، (1394). استفاده از الگوریتم کوتاه ترین مسیر در سایر شکنگ به دستور اولین عوامل مسیریابی عبیان، حسن، شاکری، علی، رحمتی، علیرضا، (1391). قوانین، مقررات، ضوابط و استانداردهای محیط زیست انسانی، قالب اول، هرآن، انتشارات حکم.

سلطانی، عبدالرضا، سیام، سیام، قهرمانی، خراسانی، نعمت الله، (1394). استفاده از الگوریتم کوتاه ترین مسیر در سایر شکنگ به دستور اولین عوامل مسیریابی عبیان، حسن، شاکری، علی، رحمتی، علیرضا، (1391). قوانین، مقررات، ضوابط و استانداردهای محیط زیست انسانی، قالب اول، هرآن، انتشارات حکم.

سلطانی، عبدالرضا، سیام، سیام، قهرمانی، خراسانی، نعمت الله، (1394). استفاده از الگوریتم کوتاه ترین مسیر در سایر شکنگ به دستور اولین عوامل مسیریابی عبیان، حسن، شاکری، علی، رحمتی، علیرضا، (1391). قوانین، مقررات، ضوابط و استانداردهای محیط زیست انسانی، قالب اول، هرآن، انتشارات حکم.

سلطانی، عبدالرضا، سیام، سیام، قهرمانی، خراسانی، نعمت الله، (1394). استفاده از الگوریتم کوتاه ترین مسیر در سایر شکنگ به دستور اولین عوامل مسیریابی عبیان، حسن، شاکری، علی، رحمتی، علیرضا، (1391). قوانین، مقررات، ضوابط و استانداردهای محیط زیست انسانی، قالب اول، هرآن، انتشارات حکم.

سلطانی، عبدالرضا، سیام، سیام، قهرمانی، خراسانی، نعمت الله، (1394). استفاده از الگوریتم کوتاه ترین مسیر در سایر شکنگ به دستور اولین عوامل مسیریابی عبیان، حسن، شاکری، علی، رحمتی، علیرضا، (1391). قوانین، مقررات، ضوابط و استانداردهای محیط زیست انسانی، قالب اول، هرآن، انتشارات حکم.
میرعبداللهی، سید کمال، سرکارگر اردکانی، علی، کرمی، جلال، (1393). تعيين مسير بهينه فطار بين شهره‌ی یزد و اردکان با استفاده از منطق فازي، همايش ملی کاربرد مدل‌های پبشرنده تحليل فضایی (سنجش از دور و GIS در آمياش سرمزمین، یزد.

نصيري هنده خاله، اسماعیل، گنجی، نسرين، (1400). تعیین مسیر بهینه شبکه راه‌ها با استفاده از سیستم اطلاعات جغرافیایی؛ مطالعه موردی: مسیر رودسر- فیروزکوه، پژوهش‌های جغرافیای انسانی، دوره 33، شماره 4، شماره 1، 38-45.

