Climatic Regionalization of Markazi Province: An Application of Factor and Cluster Analysis

Document Type : Research Paper


1 Associate Professor of Climatology, University of Sistan and Baluchestan, Zahedan, Iran

2 M.A. of Climatology, University of Sistan and Baluchestan, Zahedan, Iran


Extended abstract:
1- Introduction
The climatic classificationfrom the distant past has attracted the attention of climatologists. In traditional methods one or more climatic elements considered for classification but these methods cannot indicates the reality of climatic regions. Therefore in the recent years researchers have tried using the dominant parameters affecting climate and multivariate methods have provided a real images from climatic regions. The aim of this study is climatic regionalization of Markazi province by utilizing 29 climatic parameters and use the factor and cluster analysis. Combined use of these parameters in the climatic classification can improves accuracy and shows a real aspect of province. Recognition of microclimates can help us to identify the
strengths and weaknesses of regions climatic characteristics and useful for development planning proposes.
2- Methodology
The 29 climate variables from 21 synoptic stations from province and adjacent areas were used. By using the statistics of adjacent stations, accuracy and resolutions of factors and climatic zones were increased. The statistical data were normalized and also, due to different scales of data, the standard scores were used in analysis. The factor analysis and clustering method were applied for classification. After estimation of stations factor loading scores, by using of IDW method, 5*5km nodes were created, using these nodes instead stations in classification improved the accuracy of climatic classification. Eventually by calculation of factor scores in stations, a cluster analysis was applied. For interpolation purpose the kriging methods in GIS were used.
2-1- Factor analysis
The factor analysis as multivariate statistical methods can reduce the number of variables. The advantage of this method is that not only reduces the number of variables, but also keeps the variance of main data.
If the internal correlation between variables is much closer, the number of emerged factors is to be less.
2-2- Cluster analysis
In this method, the grouping of observations based on their distances, this means that observations have short distances classified in one cluster. The aim of clustering method is construction some group that the within group variance less than between group variance. The distance method usually applied for two or multi criteria clustering.
In this method, Euclidean geometry was used for distances measuring of members. According to Euclidean distance between spatial and temporal points, the distance matrices to be created that based on these matrix distances, determined the spatial and temporal cluster.
3- Argument
The factor analysis over variables was showed that the 6 components explained about 90% of region climatic behaviors. The factors with regards to weight of them over the variables are named. These principle components are; Dust-coldness, precipitation, Cloudiness-humid, Thermal, precipitation- coldness and Cloudiness - Thunder. The dust-coldness factor has its maximum weights over Arak region. In south west of province, the precipitation factor were dominate and the cloudiness-humid factor active over the north of province. The thermal factor was affected over Arak and some of southeastern regions of province. Precipitation- coldness factor in Tafresh and north of province and finally Cloudiness- Thunder factor dominated over North West and Taftresh area. The cluster analysis over these 6 factors confirmed 7 climatic regions in Markazi province.
These regions are:
The temperate and semi-dust;
Dusty and semi humid;
Warm and semi arid;
Dusty Semi cold and semi humid;
Temperate and dusty semi arid;
Semi arid Temperate;
Cold and dusty semi arid;
Semi cold and humid thunder.
4- Conclusion
In the studied area despite the homogenous synoptic systems Because of vitiate geographic factors such as elevation, topographic orientation; latitude and etc, the role of synoptic systems are overshadowed. These caused numerous microclimates in the region. The results of factor analysis shown that climate of region affected by 6 components. These principle components are; Dust-coldness, precipitation, Cloudiness-humid, Thermal, precipitation- coldness and Coldness – Thunder. These components explained about 90% of region climatic behavior. Cluster analysis shown 7 different climatic regions. The factor-cluster analysis technique is found advantageous over many of traditional methods, as it produces richer regions and shows clear climate variations within this province.


اسمعیل نژاد، مرتضی، (1384)،  پهنه بندی اقلیمی استان سیستان وبلوچستان با سیستم اطلاعات جغرافیایی، پایان نامه کارشناسی ارشد، دانشگاه سیستان و بلوچستان، زاهدان.
اصلاحی، مهدی، (1382)، "آشکارسازی تغییر اقلیم ایران به روش تحلیل خوشه بندی،" سومین کنفرانس منطقه ای و اولین کنفرانس ملی تغییر اقلیم، سازمان هواشناسی کشور، اصفهان.
جعفرپور، ابراهیم، (1377)، اقلیم شناسی، چاپ چهارم، انتشارات دانشگاه تهران.
جهانبخش، سعید و سیما ترابی، (1383)، "بررسی و پیش بینی تغییرات دما و بارش در ایران"، فصلنامه تحقیقات جغرافیایی، شماره 74.
خلیلی، علی، علی اصغر درویش صفت، رضا برادران راد و جواد بذرافشان، (1383)، "پیشنهاد روش برای پهنه بندی اقلیمی در محیط GIS مطالعه موردی شمال غرب ایران در سیستم سلیانینف"، مجله بیابان، جلد 9، شماره2، صص 237 – 227.
خلیلی، علی، (1383)، "تدوین یک سامانه جدید پهنه‌بندی اقلیمی از دیدگاه نیازهای گرمایش ـ سرمایش محیط و اعمال آن بر گستره ایران"، فصلنامه تحقیقات جغرافیایی، شماره 75، تهران.
دین پژوه، یعقوب، احمد فاخری، محمد مقدم، سعید جهانبخش و میرکمال میرنیا، (1382)، "انتخاب متغیرها به منظور پهنه بندی اقلیم بارش ایران با روش‌های چندمتغیره"، مجله علوم کشاورزی ایران، جلد 34، شماره 4، صص 823 – 809.
سلیقه، محمد، فرامرز بریمانی و مرتضی اسمعیل نژاد، (1387)، "پهنه بندی اقلیمی استان سیستان و بلوچستان"، مجله جغرافیا و توسعه، شماره 12، صص 116 - 101، زاهدان.
عزیزی، قاسم، (1380)، " طبقه بندی رقومی ایستگاههای اقلیمی منتخب در ایران به روش لیتین اسکی"، مجله پژوهشهای جغرافیائی، شماره 41، صص 51 ـ 39، تهران.
علیجانی، بهلول، (1381)، اقلیم شناسی سینوپتیک، چاپ اول، انتشارات سمت، تهران.
غیور، حسنعلی و مجید منتظری (1383)، "پهنه بندی رژیم های دمایی ایران با مؤلفه های مبنا و تحلیل خوشه ای"، مجله جغرافیا و توسعه، شماره 4، زاهدان.
کاویانی، محمدرضا و بهلول علیجانی، (1378)، مبانی آب و هواشناسی، چاپ ششم، انتشارات سمت، تهران.
مسعودیان، ابوالفضل، (1382)، "بررسی پراکندگی جغرافیایی بارش در ایران به روش تحلیل عاملی دوران یافته"، مجله جغرافیا و توسعه، سال اول، شماره 1، صص 88 - 79، زاهدان.
مسعودیان، ابوالفضل، (1382)، "نواحی اقلیمی ایران"، مجله جغرافیا و توسعه، شماره 2، صص 184 ـ 171، زاهدان.
مسعودیان، ابوالفضل، (1384)، "شناسایی رژیم های بارش ایران به روش تحلیل خوشه ای"، مجله پژوهش های جغرافیایی، شماره 52.
مسعودیان، ابوالفضل، (1388)، "نواحی بارشی ایران"، مجله جغرافیا و توسعه، شماره 13، صص91 – 79، زاهدان.
نصیری، رسول، (1387)، آموزش گام به گام SPSS، چاپ اول، انتشارات نشرگستر، تهران.
Ahmed, Badraddin Yusuf Mohammad,1997, Climatic classification of Saudi Arabia:an application of factor – cluster analysis, GeoJournal, 41.1: 69–84.
Bishop I.D(1984), ‘‘Provisional Climatic Regions of Peninsular Malaysia’’, Pertanika 7(3), pp. 19-24.
Carbajal. N, L. Pineda Martinez, E. Medina Roldan(2007), Regionalization and classification of bioclimatic zones in the central-northeastern region of Mexico using principal component analysis (PCA)’’, journal content, Vol 20, No 2, Universidad Nacional Autonoma de Mexico.
Gaitani, N.; Santamouris, M. Mihalakakou, G. Patargias(2006), ‘‘Cluster Analysis in Energy Classification of School Buildings’’, AIVC 27th conference - EPIC2006AIVC,  Lyon, France.
Gerstengarbe F.W, P. C. Werner, K. Fraedrich(1999), ‘‘Applying Non-Hierarchical Cluster Analysis Algorithms to Climate Classification: Some Problems and their Solution’’, Theoretical and Applied Climatology, Volume 64, Issue 3/4, pp.143-150.
Heise Bjoern, Bernd Bobertz, and  Jan Harff(2010), ’’Classification of the Pearl River Estuary via Principal Component Analysis and Regionalization’’, Journal of Coastal Research, pp.769-779.
Newnham, R. M. (1968), ‘‘A Classification of Climate by Principal Component Analysis and Its Relationship to Tree Species Distribution’’, Forest Science, Volume 14, Number 3,  pp. 254-264.
Singh C.V.(1999), ‘‘Principal Components of  Monsoon rainfall in normal, flood and drought years over India’’, international journal of climatology, pp.639-652.