Landslide hazard zonation using AHP model and GIS technique in Khoram Abad City

Document Type : Research Paper

Authors

1 Ph.D Student of Geomorphology, Kharazmi University, Tehran, Iran

2 Ph.D Student of Geomorphology, University of Isfahan, Isfahan, Iran

3 MA. of Geomorphology, University of Isfahan, Isfahan, Iran

Abstract

Extended abstract
1- Introduction
The increasing growth of urban and rural development has caused some natural anomalies in the Earth's inhabitants. Mass movements, especially landslides, are one of the most damages of them that have had the increasing momentum together human manipulation in natural systems in recent decades. So that it is one of the principal geomorphic processes in the mountainous areas. Landslide phenomenon occurring in many parts of the world and Iran in the favorable conditions causes the destruction of vegetation, orchards, farmlands, and even human casualties. According to estimates, landslides have imposed much financial damages about 500 milliard Rials to Iran, annually.
Burying of Abikar village of Charmahal-o-Bakhtiari Province in spring 1997 year is one of the clear samples of landslide human damage. Among these, the Lorestan Province is one of the most susceptible sites of landslide occurrence in Iran. The occurrence about 274 landslides in Lorestan Province, with extent 1400km2 equivalent %4.8 of its area confirm this claim. Since the exact predication of landslides occurrence isn’t possible by human sciences, thus, we can prevent from the damages of this phenomenon by identification of landslide susceptible areas and prioritizing them. Landslide hazard zonation maps can help the environmental designers and engineers to select a suitable place for development projects implementation. The results of these studies can be used as fundamental information by environmental managers and planners.
The purposes of this study are the recognition of effective factors in landslide and the zonation of Khoram Abad City in terms of the occurrence of this phenomenon using the AHP model and GIS technique. Therefore, selection of criteria and standards, providing of factors raster layers, determining of relative and final weight of factors, overlaying of layers and preparing landslide hazard zonation map are the major objectives of this research to determine sensitive sites that have the maximum occurrence probability of landslide. 
 
2- Methodology
The studied area is Khoram Abad City, center of Lorestan province, which has been located in the 32o, 45َ to 34o North latitude and 47o, 30َ to 49o East longitude (Fig. 1).
At first, study area was investigated and determined its extent using satellite images of Google Earth and 1:50000 topographic maps. Then, according to Geological, Geomorphologic, Hydrological, Climatic, Human and Environmental characteristics of study area and using comparative studies and results of other researchers, 5 criteria, 13 sub-criteria and 77 classes were identified to achieve the goals. The needed Layers of landslide hazard zonation were prepared using Arc GIS 9.3 software. These layers are elevation class, slope, aspect, distance from stream, stream density, distance from way, distance from fault, distance from settlement, lithology of Earth material, landuse, land unit, isohyets and isotherm maps (Fig. 2). Also, effecting factors were evaluated through AHP model, and their weights were determined. Finally, the landslide hazard zonation map of study area was presented using weight exertion of factors in their layers and integration of them by Arc GIS software. In the end, the presented model and zonation map were compared with observed landslide, and landslide index values and model accuracy were calculated.
 
3- Discussion
The AHP is a structured technique for dealing with complex decisions that was developed by Thomas L. Saaty in the 1980 year. It provides a comprehensive and rational framework for structuring a decision problem, for representing and quantifying its elements, for relating those elements to overall goals, and for evaluating alternative solutions.
First step in AHP is the decomposing of decision problem into a hierarchy of more easily comprehended sub-problems, each of which can be analyzed independently. Overall form of hierarchy can be as following:

Goal, criteria, sub-criteria, alternative.
Goal, criteria, factor, sub-factor, alternative.

Present study has been used first structure for landslide hazards zonation of Khoram Abad City that its result include figure (3).
Once the hierarchy is built, the various elements are evaluated by comparing them to one another two at a time, with respect to their impact on an element above them in the hierarchy. The AHP converts these evaluations to numerical values that can be processed and compared over the entire range of the problem. These evaluations are converted to numerical values between 1 and 9 by Saaty (1980) that have been presented in table (1). The obtained result of weighting, comparative matrixes and relative weight calculation of factors affecting landslide hazard zonation in study area is presented in tables (2) to (6). 
In the final step of the process, numerical priorities are calculated for each of the alternatives. These numbers represent the alternatives' relative ability to achieve the goal, so they allow a straightforward consideration of the various courses of action. The obtained results of final weight calculation of priorities have been showed as equations (4) to (9).
 
4- Conclusion
Once the significant of criteria matrix is confirm, final weight of factors is multiplied in their layers to prepare zonation map. For correct application of the obtained weights, and presentation of final model, Raster Calculator and Weighted Sum methods have been used respectively. Figure (4) is final result that shows landslide hazard zonation map in Khoram Abad City.
Results of integration of landslide hazard zonation map with observed landslide map and calculation of landslide index have been showed in table (9). The values of mentioned index represent the ascending trend of this index from very low risk to very high risk zone. The ascending trend illustrates the accuracy of landslide hazard zonation model. The results of table (9) show that very low risk zone busies %16.8 of Khoram Abad City area, but is included %10.4 of landslide area. Furthermore, very high risk zone is included %6.17 of Khoram Abad City area and %7.9 of landslide area.
 
5. Discussion and Conclusion
The landslide phenomenon is one of environmental hazards which occur in Khoram Abad City in most times. Therefore, creation of one regional strategy is very necessary to reduce its damages and maintains natural and human resources. Furthermore, landslide hazard zonation map can help research centers in environmental management and planning. In this study, GIS technique and AHP model have been used to achieve goals. The results showed that integration of GIS technique and AHP model is a mighty method for preparation of landslide hazard zonation map in study area.
According to effective factors in landslide occurrence, the study area was zoned as various layers. Finally, landslide occurrence zones were recognized from very low risk to very high risk. The investigations showed the zones of very high and high risk are often coinciding with settlement sensitive areas. This represents the factors such as unsuitable site selection of the settlement centers and communication ways and the changing of landuse by humans in Khoram Abad City.
Among the effective factors, sub-criteria of distance from way, distance from stream, stream density and distance from fault, respectively, with weights 0.2043, 0.1717, 0.1545 and 0.1076 have been identified as the most important factors in the development of landslide in study area. The role of other factors reduces according to their weights in landslide that has been showed in table (3). According to presented model and final zonation map, about 25.51 percent (1603.8 Km2) of the Khoram Abad City area have the occurrence of very high risk (%6.17 equal to 387.9 Km2) and the occurrence of high risk (%19.34 equal to 1215.9 Km2). The great extent is showing the landslide occurrence importance in the future that doubles the necessity of its management issues. The results obtaining accuracy evaluation of the model, illustrate ascending trend of the landslide index from very low risk to very high risk zone.

Keywords


 
احمدی، حسن، اسمعلی، اباذر، فیض‌نیا، سادات و محسن شریعت جعفری، (1382)، پهنه بندی خطر حرکات توده­ای با استفاده از دو روش رگرسیون چند متغیره (MR) و تحلیل سلسله مراتبی (AHP) (مطالعه موردی: حوضه آبخیز گرمی چای)، مجله منابع طبیعی ایران، جلد 56، ش 4، صص 323-336.
امامی، سید نعیم و جعفر غیومیان، (1382)، پژوهشی بر ساز و کار زمین­لغزش­ها برروی واریزه­های دامنه­ای (مطالعه موردی: لغزش افسرآباد استان چهارمحال و بختیاری)، مجموعه مقالات سومین کنفرانس زمین‌شناسی مهندسی و محیط زیست ایران، دانشگاه بوعلی سینا همدان، صص 113-126.
جوکار سرهنگی، عیسی؛ امیر احمدی، ابوالقاسم و حسین سلملیان، (1386)، پهنه­بندی خطر زمین­لغزش در حوضه صفارود با استفاده از سیستم اطلاعات جغرافیایی، مجله جغرافیا و توسعه ناحیه­ای، شماره 9، صص 79- 93.
رامشت، محمد حسین، (1375)، کاربرد ژئومورفولوژی در برنامه­ریزی ملی، منطقه­ای، اقتصادی، چاپ اول، انتشارات دانشگاه اصفهان.
شادفر، صمد؛ یمانی، مجتبی؛ قدوسی، جمال و جعفر غیومیان، (1386)، پهنه­بندی خطر زمین لغزش با استفاده از روش تحلیل سلسله مراتبی (مطالعه موردی: حوضه آبخیز چالکرود تنکابن)، مجله پژوهش و سازندگی در منابع طبیعی، ش 75، صص117-126.
عظیم پور، علیرضا؛ صدوقی، حسن؛ دلال اوغلی، علی و محمد رضا ثروتی، ( 1388)، ارزیابی نتایج مدل AHP در پهنه­بندی خطر زمین لغزه (مطالعه موردی: حوضه آبریز اهرچای) مجله علمی پژوهشی فضای جغرافیایی، سال نهم، ش 26، صص 71-78.
علیجانی، بهلول؛ قهرودی، منیژه و ابوالقاسم امیراحمدی، (1386)، پهنه­بندی خطر وقوع زمین لغزش در دامنه­های شمالی شاه جهان با استفاده ازGIS (مطالعه موردی: حوضه اسطرخی شیروان)، فصلنامه تحقیقات جغرافیایی، ش 84، صص 116 – 131.
علی­محمدی، صفیه؛ پاشایی اول، عباس؛ شتایی جویباری، شعبان و لطف­اله پارسایی، ( 1388)، ارزیابی کارایی مدل­های پهنه­بندی خطر زمین­لغزش در حوضه آبخیز سید کلاته رامیان، مجله پژوهش­های حفاظت آب و خاک، جلد شانزدهم، ش اول، صص 59-78.
فیض­نیا، سادات؛ کلارستاقی، عطااله؛ احمدی، حسن و مهرداد صفایی، (1383)، بررسی عوامل موثر در وقوع زمین­لغزش­ها و پهنه­بندی خطر زمین لغزش (مطالعه موردی: حوضه آبخیز شیرین­رود سد تجن)، مجله منابع طبیعی ایران، جلد 57، ش 1، صص 3-22.
قدسی‌پور، سید حسن، (1388)، فرآیند تحلیل سلسله مراتبی، انتشارات دانشگاه صنعتی امیرکبیر، چاپ هفتم، تهران.
قنبرزاده،‌هادی و ابوالفضل بهنیافر، (1388)، پهنه­بندی خطر زمین لغزش­ها در ارتفاعات حوضه آبریز کال شور (شهرستان نیشابور)، مجله علمی پژوهشی فضای جغرافیایی، سال نهم، ش 28، صص 103- 123.
مصفایی، جمال؛ اونق، مجید؛ مصداقی، منصور و محسن شریعت جعفری، (1388)، مقایسه کارایی مدل­های تجربی و آماری پهنه­بندی خطر زمین­لغزش (مطالعه موردی: آبخیز الموت رود)، مجله پژوهش‌های حفاظت آب و خاک، جلد شانزدهم، ش 4، صص 43-61.
مقتدر، عطیه؛ بحرودی، عباس؛ شریفی، محمدعلی و محمدرضا مهدویفر، (1389)، پهنه‌بندی خطر زمین­لغزش استان لرستان با استفاده از منطق فازی، چهاردهمین همایش انجمن زمین­شناسی ایران و بیست­وهشتمین گردهمایی علوم زمین، دانشگاه ارومیه، 25 الی27 شهریورماه.
مقیمی، ابراهیم؛ علوی­پناه، سید کاظم و تیمور جعفری، (1387)، ارزیابی و پهنه­بندی عوامل موثر در وقوع زمین­لغزش دامنه­های شمالی آلاداغ (مطالعه موردی: حوضه زهکشی چناران در استان خراسان شمالی)، موسسه جغرافیایی دانشگاه تهران، مجله پژوهش­های جغرافیایی، شماره 64، صص53-75.
Bertolini, M., Braglia, M., & Carmignani, G., (2006), Application of the AHP methodology in making a proposal for a public work contract, International Journal of Project Management: 24, Pp. 422–430.
Bowen, W.M., (1990), Subjective judgments and data environment analysis in site selection, Computer, Environment and Urban Systems, Vol. 14, Pp.133-144.
Cimren, E., Catay, B., Budak, E., (2007), Development of a machine tool selection system using AHP, International Journal of Advanced Manufacturing Technolxgy35, Pp. 363–376
Dyer, R.F., & Forman, E.H., (1991), An analytical approach to marketing decisions, Englewood Cliffs, NJ: Prentice Hall, USA.
Dey, P.K., & Ramcharan, E.K., (2000), Analytic hierarchy process helps select site for limestone quarry expansion in Barbados, Journal of Environmental Management: 88, Pp. 1384–1395.
Esmali, A., & Ahmadi, H., (2003). Using GIS & RS in Mass Movements Hazard Zonation -A Case Study in Germichay Watershed, Ardebil, Iran., Map India Conference Disaster Management., Pp :1-5
Hattanji, T., & Moriwaki, H., (2009), Morphometric analysis of relic landslides using detailed landslide distribution maps: Implications for forecasting travel distance of future landslides. Journal of Geomorphology, No, 103, Pp. 447-454.
Lopez H.J., & Zink J.A., (1991), GIS-assisted modelling of soil-induced mass movement hazards: a case study of the upper Coello river basin, Tolima, Colombia. ITC Journal: 4, Pp. 202–220.
Moreno-Jiminez, J.M., Joven, J.A., Pirla, A.R., & Lanuza, A.T., (2005), A spreadsheet module for consistent consensus building in AHP decision making, Journal of Group Decision and Negotiation, vol. 14, Pp. 89–108.
Nefeslioglu, H.A., Duman, T.Y., Durmaz, S., (2008). Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region    of Turkey). Journal of Geomorphology, 94 (3-4), Pp. 401-418.
Ownegh, M., (2004), Assessing the Application of Australian Landslide databases for hazard management, 13th International Soil Conservation Organization Conference - Brisbane, July.
Pradhan, B., (2011). An Assessment of the Use of an Advanced Neural Network Model with Five Different Training Strategies for the Preparation of Landslide Susceptibility Maps. Journal of Data Science, No. 9, Pp. 65-81.
Saaty, T.L., (1986), Axiomatic foundation of analytical hierarchy process, Journal of Management science, Vol. 31, No. 7, Pp. 841-855.
Vahidnia, M. H., Alesheikh, A. A., Alimohammadi, A., & Hosseinali, F., (2009). Landslide Hazard Zonation Using Quantitative Methods in GIS. International Journal of Civil Engineering, Vol. 7, No. 3, Pp. 176-189.
Van Westen, C.J., Rengers, N., Terline, M.T.J., and Soeters, R. (1997) Predication of the Occurrence of slope Instability Phenomena through GIS-Based Zonation. Journal of Geologisches Rundschau, No. 86, Pp. 404-414.
Yalcin, A., (2008). GIS-based landslide susceptibility mapping using analytical hierarchy Process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Journal of Catena, No: 72; Pp. 1 – 12.
Yoshimatsu, H., Abe, S., (2006). A review of landslide hazards in Japan and assessment of their Susceptibility using an analytical hierarchic process (AHP) method. Journal of Landslides, No. 3, Pp. 149-158.