تحلیل و طبقه‌بندی چند متغیره برای مدلسازی متغیرهای موثر بر شکل هندسی مخروط افکنه‌های دامنه شمالی کوهستان باقران (جنوب شهر بیرجند)

نویسندگان

چکیده

  مطالعات گسترده‌ای در مورد زمین شناسی و ژئومورفولوژی مناطق خشک و نیمه خشک بیابان‌های ایران انجام شده است. اما در این بین مخروط افکنه‌ها به عنوان یکی از اشکال ژئومورفیک نادیده گرفته شده و یا کمتر به طور تخصصی مورد مطالعه قرار گرفته است. در ا ی ن مقاله مخروط افکنه‌های رشته کوه باقران در جنوب شهر ب ی رجند از نظر شکل هندس ی مورد بررس ی قرار گرفته، بطوریکه در ابتدا 17 مخروط افکنه شناسا یی و نقشه بردار ی شده است. اندازه گیری‌های مربوط به پارامترهای تعیین کننده شکل هندسی مخروط افکنه‌های منطقه به طور مجزا صورت گرفته است. در مرحله بعدی این اندازه گیری‌ها برای بررسی روابط و مقایسه شکل هندس ی این لندفرم‌ها با یکدیگر مورد استفاده قرار گرفته است. برای این منظور از مدل‌های مختلف و نرم افزارهای ویژه برای تحلیل‌های چند متغیره مانند: تحلیل‌های عامل و تحلیل‌های خوشه ای و در نهایت ، برازش منحنی‌ها رگرس ی ون ی استفاده شده است. بر اساس نتا ی ج حاصله مهمترین متغیر موثر در شکل مخروط افکنه‌های منطقه مساحت حوضه زهکشی در بالا دست هر مخروط افکنه است که با عامل اول حاصل از تحل ی ل عامل ی همبستگی در حدود 88 درصد را نشان می دهد. با کمک تحل ی ل خوشه مخروط افکنه‌های منطقه در 5 گروه طبقه بند ی شده است. بر این اساس در گروه اول، تعداد 10 مخروط افکنه با میزان تشابه 35/70 درصد، در گروه دوم تعداد 3 مخروط افکنه با میزان تشابه 62/76 درصد، در گروه سوم تعداد 2 مخروط افکنه با میزان تشابه 86/73 درصد و در گروه‌های چهارم و پنجم هر کدام یک مخروط افکنه با میزان تشابه به ترتیب 45/60، 76/12 درصد قرار گرفته است. برازش‌های مختلفی که به شیوه‌های گوناگون بین دو متغیر اصل ی موثر در شکل هندس ی مخروط افکنه‌ها (مساحت حوضه زهکشی و مساحت مخروط افکنه‌ها در منطقه) انجام گرفته با توجه به مقدار ضریب تعیین مدل‌های مختلف ( ) تب ی ین کننده مناسب ­ تر بودن مدل نمایی برای تخمین ارتباط بین این دو متغیر در منطقه است.  

کلیدواژه‌ها


عنوان مقاله [English]

Multivariate analysis and classification for modeling variables affecting the alluvial fan geometry of north BAGHERAN mountain range (south of Birjand)

نویسندگان [English]

  • M. Saghafi
  • A. Amirahmadi
  • M. Rabiei
  • A. Amirahmadi
چکیده [English]

  Multivariate analysis and classification for modeling variables affecting the alluvial fan geometry of north BAGHERAN mountain range (south of Birjand)      Received: July 30, 2010/ Accepted: November 13, 2011, 19-21 P   A. Amirahmadi. ( * )   Assistante Professor of Geomorphology, University of Tarbiat Moallem Sabzevar, Sabzevar, Iran   e-mail: amirahmadi@sttu.as.ir     M.Saghafi.   Assistante Professor of Geomorphology, University of Payam Noor, Tehran, Iran     M. Rabiei   M.A. of Geomorphology, University of Tarbiat Moallem Sabzevar, Sabzevar, Iran           Extended abstract   1- Intro duction   Extensive studies of geology and geomorphology in arid and semi-arid deserts of Iran have been done so far, but in between the alluvial fan as one of geomorphologic forms has been ignored or less has been studied specifically. In this paper, alluvial fan geometry of BAGHERAN Mountains in the south of BIRJAND city has been studied. In fact the main purpose of this paper is to study the relationship between the morphology of alluvial fans and physiographic characteristics of their composing basins, and to compare these landforms to analyze their geomorphologic evolution.   The study area, Birjand plain, is located between 32°42′N to 33°8′N and 58°41′E to 59°44′E.     This area has composed of meridian topographic elongated and has caused two separate adjacent flat plains with the same trend. The northern one is called Birjand plain drainage basin which is about 3425 square kilometers. Plain covers about 980 square kilometers of this area and the rest are covered by heights.     2- Methodology   Initially, 17 alluvial fans have been identified and mapped. Measurements to determine the parameters of the alluvial fan geometry have been done separately. In the next phase these measurements have been used to evaluate and compare the geometric relationships of this land forms. For this purpose, various models and special software are applied for multivariate analysis such as: factor analysis and cluster analysis and finally fitted regression curves.     3- Discussion   According to calculated eigenvalues, factor analysis resulted in determining 4 main factors affecting the alluvial fans geometry. The first factor covers 57% of variables’ variances the second factor covers 15.9% of variables’ variances the third factor covers 9.8% of variables’ variances and the forth factor covers 6.9% of variables’ variance. These 4 factors cover 89.7% of all variables’ variances in total that shows suitability of variables chosen for factor analysis. Correlation matrix between research variables and factors affecting alluvial fans geometry shows that the most important variable affecting the area’s alluvial fans geometry is the area of each alluvial fan’s drainage basin which is about 0.88 correlated with the first chosen factor. Hence, the area of drainage basin of each alluvial fan can be considered as the most important variable affecting alluvial fans geometry.     4- Conclusion   Based on results the most important variable which is affecting the region alluvial fan is drainage basin area upstream of each alluvial fan. This factor shows correlation of about 88 percent with the first factor obtained from factor analysis. Alluvial fans have been classified into five regional groups with the help of cluster analysis. Accordingly, in the first group, 10 alluvial fans are located with a 70.35 percent similarity, three in the second group with a 76.62 percent similarity, two in the third group with a 73.86 percent similarity. Fourth and fifth groups each contain one alluvial fan with a similar rate, respectively 60.45 and 12.76 percent. Various fitting methods between the two main variables affecting the alluvial fan geometric (area of drainage basin and alluvial fan area in the region), according to the coefficient of determination ( ) shows that the exponential model better estimates the relationship between these two variables in the region. According to the studies conducted in this paper, the derived model would be:     In this model is area of the alluvial fan, is area of drainage basin and x is a fixed coefficient that is obtained empirically. Coefficient x that differs from 0.1 to 2.2 according to geographical conditions of each area, for the study area and its alluvial fans is equal to 0.1078.       Refrences   Blackwelder, E., (1928). Mudflow as a geologic agent in semi-arid mountians. Bulletin of the Geological Society of America, 39: 465-484.   Blair, T.C. and McPherson, J.G., (1994). Alluvial fan processes and forms. In: A.D. Abrahams and A.J. Parsons (Editors), Geomorphology of Desert Environments. Chapman and Hall, London, pp. 354-402.   Blissenbach, E., (1954). Geology of alluvial fans in semi-arid regions. Bulletin of the Geological Society of America, 65: 170-190.   Bull, W.B., (1962). Relations of alluvial fan size and slope to drainage basin size and lithology in western Fresno County, CA, U.S. Geological Survey Professional Paper 450-B, 51-53.   Bull, W.B., (1977). The alluvial fan environment. Progress in Physical Geography, 1: 222- 270.   Darvishzade, A., (2007).Geologyiran, stratigraphy, tectonic, metamorphosis   Davis, W.M., (1899). The geographical cycle. Geographical Journal, 14: 481-504.   Denny, C.S., (1965). Alluvial fans in the Death Valley Region, California and Nevada. United States Geological Survey Professional Paper 466, 59 pp.   Drew, F., (1873). Alluvial and lacustrine deposits and glacial records of the Upper Indus Basin. Geological Society of London Quarterly Journal, 29: 441-471.   Eckis, R., (1928). Alluvial fans in the Cucamonga district, southern California. Journal of Geology, 36: 111-141.   Harvey, A.M., Silva, P.G., Mather, A.E., Goy, J.L., Stokes, M., Zazo, C., (1999). The impact of Quaternary sea level and climatic change on coastal alluvial fans in the Cabo de Gata Ranges, southeast Spain. Geomorphology, 28: 1-22.   Hooke, R.L., (1968). Steady state relationships on arid-region alluvial fans in closed basins. American Journal of Science, 266: 609-629.   Horton, R.E., (1945). Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America, 56: 275-370.   Khatib, M.m., (2008). Analyze structural mountains south Birjand,Thesis of   Lecce, S.A., (1990). The alluvial fan problem. In: A.H. Rachocki and M. Church (Editors), Alluvial Fans: A Field Approach. Wiley, Chichester, pp. 3-24.   M.S.c, Tarbiyat Modares University, 188pp.   Mansurfar, K., (2010). Statistical advanced methods with plan computerize, publishing house Tehran.   Megmatism, Publishing house amir kabir, Tehran, 434pp.   Saghafi, M., (2011). Studies geomorphology bassins slopes northern mountain Bagheran, studies plan research P.N university, 284 PP.   Smith, G.A., (2000). Recognition and significance of streamflow-dominated piedmont facies in extensional basins. Basin Research, 12: 399-411.   Smith, L.M., (1983). Geomorphic development of alluvial fans in the Yazoo Basin, northwestern Mississippi. Ph.D. Dissertation, University of Illinois at Urbana. Champaign, 242 pp.   Strahler, A.N., (1957). Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical :::union:::, 38: 913-920.   Zomorodiyan, M.j., (1996). Usage physical geography in urban and rural planning, publishing house P.N University.      

کلیدواژه‌ها [English]

  • classification and multivariate analysis
  • Modeling
  • Alluvial Fan
  • Bagheran Mountain (Birjand city)