کاربرد شبکه عصبی مصنوعی در شبیه‌سازی عناصر اقلیمی و پیش‌بینی سیکل خشکسالی ) مطالعه موردی: استان اصفهان(

نویسندگان

چکیده

 اربرد شبکه عصبی مصنوعی در شبیه‌سازی عناصر اقلیمی و پیش‌بینی سیکل خشکسالی ) مطالعه موردی: استان اصفهان( چکیده   در این­ پژوهش، از شبکه­های عصبی مصنوعی ( Artificial Neural Networks ) به عنوان ابزاری توانمند در مدل سازی فرآیندهای غیرخطی و نامعین، به منظور پیش­بینی سیکل خشکسالی در20 ایستگاه سینوپتیک، کلیماتولوژی و هیدرومتری استان اصفهان که حداقل20 سال آمار روزانه داشتند، استفاده شد. از نرم­افزار MATLAB-7 و در شاخه Neural Network ، برای پیش­بینی وتجزیه و تحلیل عناصراقلیمی کمک گرفته شد. ورودی مدل­های ANN ، داده­های میانگین­ماهانه بارش، دبی حداقل و دمای­بیشینه است که این داده­ها، بازه زمانی سال­های1360 تا1383 را در بر می­گیرند. اطلاعات20 ساله برای آموزش مدل ­ ها و 4 سال باقی مانده برای آزمایش آن­ها به کاررفته است. شبکه مورد استفاده از نوع پرسپترون چندلایه( Multi - layer P erceptron ) با الگوریتم پس­انتشارِخطا ( Back Propagation ) و تکنیک یادگیری مارکوارت- لونبرگ ( Train LM: Levenberg-Marquardt ) است. ساختارهای گوناگونی از شبکه عصبی با تغییر در لایه­های ورودی (6 مدل)، تعداد گره­ها در لایه­های پنهان و خروجی (2 الی20 گره) ایجاد گردید. نتایج حاصل از تحقیق حاضر، نشان می­دهد که در ­ میان الگوهای مورد بررسی، دمای­بیشینه، دبی و بارش، نقش مثبتی در پیش­بینی خشکسالی­های استان اصفهان داشته، با کاربرد شبکه عصبی مصنوعی می­توان با دقت بالای 95 درصد، سیکل خشکسالی استان را پیش­بینی نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Artificial Neural Network in Climatic Elements Simulation and Drought Cycle Predication (Case Study: Isfahan Province)

نویسندگان [English]

  • J. Khoshhal dastjerdi
  • S.M. Hosseini
چکیده [English]

  Abstract   In this research, Artificial Neural Networks (ANNs) were used as strong tool in simulation of nonlinear processes to predict drought cycle in twenty synoptic, climatic and hydrometric stations in Isfahan province. where had daily statistics for twenty years. Neural network of MATLAB-7 was used for predicting and analyzing climatic elements. Input of ANN models including: monthly rainfall mean, minimum yield and maximum temperature which were related to the period between "1984-2004". Twenty year of this period was devoted for training and the remainder four years were spent on testing. The used network was Multi-Layer Preceptron(MLP) with Back Propagation Logarithm(BP) and Levenberg-Marquardt technique(LM). Different structures of neural network were created by changing input layers (6 models), the number of tines in hidden layers and output layers (2-20). The results show that among the analyzed patterns max temperature, yield and rainfall have predict significant role to drought in Isfahan and by application of ANN can be predicted the drought cycle by the confidence interval of %95.    

کلیدواژه‌ها [English]

  • Key words: Artificial Neural Network
  • Multi-layer perceptron
  • Levenberg-Marquardt
  • Predication of drought
  • Multi
  • layer Perceptron
  • Levenberg
  • Marquardt
  • Isfahan province