واکاوی ناهنجاری‎های فشار تراز دریا در روزهای همراه با رخداد سرماهای فرین ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد اقلیم شناسی، دانشگاه اصفهان، اصفهان، ایران

2 استادیار اقلیم شناسی، دانشگاه کردستان، سنندج، ایران

چکیده

  در این پژوهش ناهنجاری فشار تراز دریا در روزهای همراه با رخداد سرماهای فرین ایران بررسی شده است. برای انجام این بررسی به کمک داده ‎ های دمای663 ایستگاه همدید و اقلیمی ایران در بازه ‎ ی زمانی 1/1/1340 تا 29/12/1382 و به یاری روش کریگینگ دمای ایران بر روی یاخته‌های 18*18 کیلومتر برای کل ایران میانیابی شد و یک آرایه­ی 5214*15705 به دست آمد. داده‌های فشار تراز دریا نیز در همین بازه ‎ ی زمانی از پایگاه داده­ی NCEP/NCAR وابسته به سازمان ملی جو و اقیانوس شناسی ایالات متحده امریکا فراهم شد. نخست روزهای همراه با سرمای فرین به کمک نمایه ‎ ی انحراف استاندار شده ‎ ی دما آشکارسازی شد. سپس مقادیر این نمایه بر حسب بزرگی و گستره ‎ ی رخداد سرما مرتب شد و پانصد مورد از سردترین و فراگیرترین سرماهای ایران برگزیده شد. سپس ناهنجاری فشار تراز دریا در روزهای برگزیده محاسبه شد. بررسی ‎ ها نشان داد که سردترین و فراگیرترین سرماهای ایران با چهار الگوی ناهنجاری فشار تراز دریا همراه است.   

کلیدواژه‌ها


عنوان مقاله [English]

Analysis the sea level pressure anomalies during extreme cold temperature days of Iran

نویسندگان [English]

  • S. A. Masoodian 1
  • M. Darand 2
1 Professor of Climatology, University of Isfahan, Isfahan, Iran.
2 Assistant Professor of Climatology, University of Kordestan, Sanandaj, Iran
چکیده [English]

 
 



Extended abstract
1- Introduction
Knowledge as to how climatic extremes are changing, during the instrumental period and the recent period of strong (global-scale) warming, is currently an important scientific goal, as climatic extremes have high environmental and socio-economic impacts. According to Rusticucci and Vargas (2002), the two parameters that mostly affect the human being and their living activities, are the extreme daily temperature values and their persistence, as well. Weather extremes (extremely hot or extremely cold days and nights) have numerous negative effects on natural (plant and animal communities, forest fires, soil erosion, etc.) and human (infrastructure damage, human health, water supply, etc.) systems.
 
 
Statistical characteristics of extreme temperature events have long been investigated because of their obvious impacts on nature and human. heavy damages are caused by severe winter weather, or by extreme cold weather during the vegetation period. Although worldwide changes in extreme climate events have been detected in the past few decades, various studies have attempted to assess regional level (IPCC, 2001). Climate change-related extreme events at Temperature extremes occur as a result of the interaction between large-scale atmospheric circulation and the local characteristics of a place (for example, topographical features and altitude). To better understand the underlying causes for the occurrence of temperature extreme events, it is important to identify the circulation patterns associated with these events. The objective of this study is to clarify sea level pressure anomalies in extreme cold temperature days of Iran.
 
 
 
2- Methodology
In order to studying sea level pressure anomalies in extreme cold temperature days of Iran, temperature data of 663 synoptic and climatic stations during 21/3/1961 to 19/3/2004 has been used. Then temperature on 18*18 kilometer pixels by using Kriging method interpolated for Iran. A matrix that was 15705*5214 has been created. Data of sea level pressure during study period extracted from NCEP/NCAR data site that relevant to United States national oceanic and atmospheric center. At first the extreme cold days recognized with Fumiaki Index and then data arranged according to intense and extend. The first 500 days that were Coldest and most extended selected as sample. In sample days, sea level pressure anomaly calculated. Cluster analysis has been carried out on sea level pressure anomaly in 500 days of extreme cold temperature days of Iran. Then the temperature anomaly for 5214 pixel has been calculated for each pattern. 
 
3- Discussion
Cluster analysis of sea level pressure anomaly in 500 days of extreme cold temperature days of Iran shows that four distinctive patterns result in extreme colds. Extreme colds mostly occur in January; almost 29 per cent of extreme colds occur in this month. July experience the least extreme colds. Only the pattern No. 2, that is weak dipole of North Sea- North Russia, occurs mostly in November. Although this pattern exists in 24 per cent of extreme colds, has the least effect on Iran temperature anomaly compared to the other patterns. The pattern of positive anomaly of sea level pressure on North Sea – North Russia mostly occurs in extreme colds. It is seen in almost 30 per cent of extreme colds. The dipole pattern of Atlantic-Scandinavia, while has the least frequency of occurrence, shows 37 per cent of Iran which holds negative temperature anomaly of -6 to -8 ۫c. Pressure anomaly, while this pattern is occurring, reaches at 11 hPa in northeast of Iran. Therefore, effect of this pattern is less than that of pattern No. 1 and more than those of patterns No. 2 and 4.
 
4- Conclusion
The least occurrence of extreme colds is for summer and especially in July which is 0.8 per cent of total extreme colds. Roughly speaking, extreme colds are not particular to cold seasons of a year and may occur in warm seasons as well. For all patterns, negative temperature anomaly in south areas of the country and south areas of Caspian Sea is trifling due to the atmosphere humidity

کلیدواژه‌ها [English]

  • Sea level pressure anomaly
  • Temperature
  • Extreme cold temperature
  • Iran
 
علیجانی، بهلول و محمود هوشیار، (1387)، شناسایی الگوهای سینوپتیکی سرماهای شدید شمال غرب ایران، پژوهش‌های جغرافیای طبیعی، شماره 65، صص 16-1.
Fujibe, F et al., (2007), long-term changes of temperature extremes and day-to-day variability in Japan, papers in Meterology and Geophysics, No. 58, pp.63-72.
Konrad, C.E., (1996), relationships between the intensity of cold-air outbreaks and the evolution of synoptic and planetary-scale features over North America, Monthly weather review, No.124,pp.1067-1083.
Maheras, P., Kutiel, H., (1999), Spatial and tempeoral variations in the temperature regime in the Mediterranean and their relationship with circulation during the last century, International journal of climatology, No.19, pp.745-764.
Park, T W et al., Characteristics of Atmospheric Circulation Associated with Cold Surge Occurrences in East Asia: A Case Study During (2005/06) winter, Advances in Atmospheric Scinces, VOL. 25, NO. 5, 791–804.
Parry, M.L., (2000), Assessment of Potential Effects and Adaptations for Climate Change in Europe: The Europe ACACIA Project. Jackson Environment Institute, University of East Anglia: Norwich.
Pezza, A.B., Ambizzi, T., (2005), Dynamical conditions and synoptic tracks associated with different types of cold surge over tropical south America, International journal of climatology, No. 25,pp. 215-241
Rusticucci, M et al., (2003), Warm and cold events in Argentina and their relationship with South Atlantic and South Pacific Sea surface temperatures. Journal of Geophysical Research, No.108, 467-483.
 Rusticucci, M., Vargas, W, (2002). Cold and warm events over Argentina and their relationship with the ENSO phases: risk evaluation analysis. International journal of climatology, No.22, pp. 467–483.
Ustrnul, Z., Czekierda, D., Wypych, A., (2010), Extreme values of air temperature in Poland according to different atmospheric circulation classifications, Physics and Chemistry of the Earth, Article in Press.
Vavrus, S et al., The behavior of extreme cold air outbreaks under greenhouse warming, international journal of climatology, 26, 1133-1147.
Wettstein, JJ., Mearns, LO, (2002), The Influence of the North Atlantic–Arctic Oscillation on Mean, Variance, and Extremes of Temperature in the Northeastern United States and Canada, Journal of Climate, Vol 15, 3586-3600.
Zhange, Q et al., (2008), Climate change or variability? The case of Yellow river as indicated by extreme maximum and minimum air temperature during 1960–2004, Theor. Appl. Climatol, 93: 35–43.