تحلیل تغییرات بارش سالانه شمال غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار اقلیم شناسی، دانشگاه زنجان، زنجان، ایران

2 کارشناس ارشد اقلیم شناسی، دانشگاه زنجان، زنجان، ایران

چکیده

  بارش یکی از متغیرترین عناصر اقلیمی است که تغییرات آن می‌تواند تبعات منفی محیطی، اجتماعی، اقتصادی و حتی فرهنگی برای جوامع بشری داشته باشد. ازاین رو مطالعه تغییرات بارش یکی از کانون‌های توجه اقلیم شناسان است. به ویژه افراز تغییر و تغییرپذیری از اهمیت شایان توجهی برخوردار بوده، می‌تواند نقش مهمی در پیش بینی‌های اقلیمی و در نتیجه مدیریت منابع آب و برنامه‌ریزی‌های بهینه محیطی، اقتصادی و کشاورزی داشته باشد. در تحقیق حاضر تلاش شده است تا رفتار میانگین طولانی مدت (تغییر) و نوسانی (تغییرپذیری) بارش در پهنه شمال غرب ایران ارزیابی گردد. بدین منظور از داده‌های 260 ایستگاه همدید، اقلیم شناسی و باران سنجی وابسته به وزارت نیرو و سازمان هواشناسی کشور طی دوره آماری 2005 - 1966 (40 ساله)، استفاده شد. با برازش مدل رگرسیون خطی به روش ناپارامتری، روند بارش بررسی شد. نتایج نشان داد که بارش سالانه دارای رفتاری کاهشی بوده است. روند کاهشی عمدتاً حاصل کاهش بارش طی دهه آخر بوده است. طی دهه چهارم بر خلاف دهه‌های قبل وسعت پهنه‌های کم بارش بیش از پهنه‌های پر بارش بود. این روند کاهشی 72 درصد از پهنه را در بر گرفته است. با تحلیل طیفی مشاهدات بارش، چرخه‌های معنی دار بارش سالانه در پهنۀ شمال غرب ایران شناسایی شد. براین اساس، چرخه‌های سینوسی معنی دار 3-2، 5-3، 11-5 و 11 سال به بالا آشکار گردید.گسترۀ وسیعی از پهنه متاثر از چرخه‌های سینوسی 11-5 ساله است. طبق تجارب جهانی، وجود این چرخه‌ها را می‌توان به تاثیر عوامل کلان مقیاس اقلیمی – اقیانوسی نسبت داد. برای مثال چرخه‌های3-2 ساله را عمدتاً به تغییرات دو سالانه ( QBO ) الگوی بزرگ مقیاس گردش عمومی جو و جریانات مداری و چرخه‌های 5-3 ساله را به پدیده انسو نسبت داده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of Annual Precipitation Changes in Northwest of Iran

نویسندگان [English]

  • H. Asakereh 1
  • R. Razmi 2
1 Associate Professor of Climatology, University of Zanjan, Zanjan, Iran
2 MA. of Climatology, University of Zanjan, Zanjan, Iran
چکیده [English]



Extended Abstract
1-Introduction
Climate change could be studied by detection of amount and tempo-spatial pattern of climatic elements.  Precipitation is one of important climatic elements that could be studied. Precipitation is one of the most variant climatic elements that could have negative consequences on environment, society, economic and even culture of human society. Accordingly the changes and looking for change and variability of precipitation take the attention of climate experts. This is because of the importance of this sort of studies on climate forecasting and water resources management as well as environmental, economical and agricultural planning.
 
 
 
Precipitation as one of fundamental elements in climate has increased by 0.1% in middle and high latitude especially during 20th century. Meanwhile in subtropical lands (Northern latitude of 10-30 degree) decreasing in precipitation by 0.3% has been reported, also there are increasing by 0.2%-0.3% in tropical regions (Mosmann et al. 2004). In addition there are negative trends of precipitation in Mediterranean basin since 1950s. Because of this spatial differ in precipitation changes and in order to precise exploring the changes, a dozen of studies have been accomplished.
 
2- Methodology
In this paper long term and oscillatory behavior of precipitation in the Northwest of Iran has been evaluated. The area under investigation is about 12654.4 square kilometers and contains four province including west and east Azarbayjan, Ardabil and Zanjan. It occupied about 7.7% of all country. The average elevation of northwest of Iran is about 1830 meters above sea level. The highest area is about 4500 meters above sea level. 
In order to do this research, daily precipitation data of 260 stations during 1966-2005 have been analyzed. The length of recorded data have been used in this study wasn’t equal, so it had created a map for every single day using the stations that was available. This stage has been accomplished by Kriging interpolation method. Accordingly 15052 daily precipitation maps by 100*100 pixel resolution were created. To create the 40 annual maps, these maps were used. So the investigated area was covered by 5374 pixels. Finally the matrix of data by dimensions of 5374*41 has been established. The analyses of two approaches were accomplished on this matrix. They are as follow:     
1- The trends of annual precipitation have been analyzed using linear non – parametric regression model.
2-annual cycles of precipitation have been estimated using spectral analyses. The cycle that has largest difference with null continuum, is chosen as the significant cycle.
Finally, all result of above two stages is presented in related maps.
 
3– Discussion
Annual precipitation of northwest of Iran  is about 360.9 mm. precipitation mean is spatially different from 200 mm (northeast of area in Dashte-Moghan) to 800 mm (in southwest of area. Accordingly spatial coefficient of variations is about 24.1%. The area with low precipitation is most extending than the area with high precipitation. For example about 58.8% of northwest of Iran has achieved the precipitation lower than its spatial average.
The annual precipitation of northwest of Iran (except of small parts in southwest and north) during the studied period has experienced decreasing trend. The amount of decrease in about 84.5% of area is about 3 mm per year. This kind of trends has been occurred especially in eastern and southern halves. Across west to east and toward the mountains the amounts of trend is decreased. About 16.8% of area is covered by Non –significant trends that contain Dashte-Moghan and western mountains. 
The region under increasing trends is about 8% of the area in which the trends is about 5-9 mm per year.
In the 58%-71% of the area, precipitation has experienced the values more than long term average during the first three decades. Meanwhile during the forth decade the area with precipitation lower than long term average has increased by 72%. 
By using spectral analyses technique on precipitation data, significant oscillations in 2-3, 3-5, 5-11 and 11 years have been discovered. Major area experienced 5-11 years oscillations. As it has reported by many experts these oscillations periods are due to macro-scales circulations between atmosphere and hydrosphere e.g. quasi binomial oscillation is related to ENSO phenomenon.
 
 
 
4– Conclusion
Based on what discovered in this paper it has been cleared that long-term mean of precipitation in 84.5% of northwest of Iran has been decreased. The increased trends values of precipitation are happened in southwest. The decreasing in precipitation is due to last decade in which the area with low precipitation has increased by 72%.Spectral analyses showed significant oscillations in 2-3, 3-5, 5-11 and 11 years. Major area experienced 5-11 years oscillations. As it has reported by many experts, these oscillations periods are due to macro-scales circulations between atmosphere and hydrosphere e.g. quasi binomial oscillation is related to ENSO phenomenon.

کلیدواژه‌ها [English]

  • precipitation
  • Spectral Analysis
  • Trends
  • Northwest of Iran
  • Harmonic
  • Frequency
 
جهانبخش، سعید و معصومه، عدالت دوست(1387)" مطالعه تغییرات اقلیمی در ایران(مطالعه موردی: نوسانات اطلس شمالی به عنوان شاخصی از تاثیر گذاری فعالیت‌های خورشیدی در تغییرات بارش منطقه آذربایجان" سومین کنفرانس مدیریت منابع آب ایران، دانشگاه تبریز، دانشکده مهندسی عمران.
 چتفیلد، ترجمه حسینعلی نیرومند، ابوالقاسم بزرگ نیا (1381)" مقدمه ای بر تحلیل سریهای زمانی" انتشارات دانشگاه فردوسی مشهد، 289صفحه.
 حجام، سهراب، یونس، خوشخو، رضا، شمس الدین وندی، (1387) " تحلیل روند تغییرات بارندگی سالانه، فصلی در چند ایستگاه منتخب درحوضه مرکزی ایران با استفاده از روشهای ناپارامتری" پژوهشهای جغرافیایی،  شماره 64،ص 168-157.
 خلیلی، علی و جواد، بذر افشان(1383)"تحلیل روند تغییرات بارندگی سالانه، فصلی و ماهانه پنج ایستگاه قدیمی ایران در 116 سال گذشته" مجله بیابان، جلد 9، شماره 1 .
 رضیئی، طیب. پیمان، دانش و بهرام، ثقفیان (1384)"بررسی روند بارش سالانه در مناطق خشک و نیمه خشک مرکزی و شرقی ایران" آب و فاضلاب، شماره 54،صص 81-73.
 زاهدی، مجید. بهروز، ساری صراف و جاوید، جامعی(1386)" تحلیل تغییرات زمانی و مکانی دمای منطقه شمال غرب ایران" جغرافیا و توسعه، پیاپی10،  صص 198-183.
 عساکره، حسین (1382)" بررسی آماری روند بارش سالانه تبریز" فضای جغرافیایی، شماره 10، صص 67-57.
 عساکره، حسین (1384)" تحلیل روند بارش سالانه استان اصفهان" نیوار، شماره 57 و 56 .
 عساکره، حسین (1388 )" تحلیل طیفی سری‌های زمانی دمای سالانه تبریز" تحقیقات جغرافیایی، شماره 93.
 عسگری، احمد و فاطمه رحیم زاده (1385)" مطالعه تغییر پذیری بارش دهه‌های اخیر ایران" پژوهشهای جغرافیایی، شماره 58،  صص 80-67.
 کاویانی، محمدرضا، حسین،  عساکره (1384)" بررسی آماری روند بلند مدت بارش سالانه اصفهان" مجله پژوهشی دانشگاه اصفهان، جلد، 18شماره1، صص 162-143.
 کاویانی، محمد رضا، ابوالفضل،مسعودیان،(1387)" اقلیم شناسی ایران" انتشارات دانشگاه اصفهان، 179صفحه.
 کتیرایی، پری. سهراب، حجام و پرویز، ایران نژاد (1386)" سهم تغییرات فراوانی و شدت بارش روزانه در روند بارش در ایران طی دوره 2001-1960" مجله فیزیک زمین و فضا، جلد 33، شماره1، صص 83-67.
گلدسته اکبر، آقامیرکریمی سعید، خدارحمی مصطفی، ترابی محمود و اصغری راحله،1377،  راهنمای کاربران SPSS 6.0 For Windows،  جلد اول، چاپ اول 1377، تهران، مرکز فرهنگی انتشاراتی حامی، صص533
Arrigo.R.D, R.vilallba, G.wiles(2001)” tree-ring estimates of Pacific decadal climate variability” climate dynamics.18:219-224.
Azad, Sarita and T. S. Vigneshb and R. Narasimha,(2009)” Periodicities in Indian monsoon rainfall over spectrally homogeneous regions” Int. J. Climatol, DOI: 10.1002/joc.2045.
Campagnucci.R.H, E.A.Agosta, W.M.vargas(2002)”climatic change and quasi-oscillations central-west Argentina summer precipitation : main features and coherent behavior with southern African region” climate dynamics, 18:421-435.
Cannarozzo.M and L.V. Noto, F. Viola(2006)” Spatial distribution of rainfall trends in Sicily (1921–2000) “Physics and Chemistry of the Earth 31 1201–1211.
Earle M.D, K.E. Steele, D.W.C. Wang(1999)” Use of advanced directional wave spectra analysis methods” Ocean Engineering 26, 1421–1434.
Domonkos(2003)” Recent Precipitation Trends in Hungary in the Context of Larger Scale Climatic Changes” Natural Hazards 29: 255–271.
Feidas and Ch. Noulopoulou, T. Makrogiannis, and E. Bora-Senta(2007)” Trend analysis of precipitation time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001” Theor. Appl. Climatol. 87, 155–177.
Garcia.J.A,A.Serrano and M.Cruz Gallego(2002)”a spectral analysis of Iberian peninsula monthly rainfall” Theor. Appl.Climatol.71,77-95.
Ghil.M, M. R. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, M. E. Mann, A. W. Robertson, A. Saunders,Y. Tian, F. Varadi, and P. Yiou(2001)” advanced spectral methods for climatic time series” Reviews of Geophysics, 40, 1 , pages 1-1–1-41.
Hartmann, S. Becker, and L. King, (2008)“Quasi-periodicities in Chinese precipitation time series” Theor. Appl. Climatol. 92, 155–163.
Hegge,Gerhard Masselink,(1996)“spectral analysis of geomorphic time series: auto-spectrum “earth surface processes and landforms, vol. 21, 1021-1040.
Henderson,(2000)“Autumn precipitation trends in the northeast united states ” Middle States Geographer, 33:74-81.
Hidalgo.J.C.G and Joan-Albert Lopez-Bustins,b Petr ˇ Step´anek,c Javier Martin-Videb and Martin de Luisa(2009)” Monthly precipitation trends on the Mediterranean fringe of the Iberian Peninsula during the second-half of the twentieth century (1951–2000)” Int. J. Climatol. 29: 1415–1429.
Hoaglin, David C. Mosteller, Frederick and Tukey , John W.(edit) 2006: Exploring Data Table, Trends, and Shapes. John Wily & Sons.Inc.U.S.A . 527pp
Huth.R , Pokorna.L 2004: Parametric Versus Non-Parametric estimates of climatic Trends. Theor.Appl.Climatol. 77: 107-112
Kampata and B.P. Parida, D.B. Moalafhi (2008)” Trend analysis of rainfall in the headstreams of the ZambeziRiver Basin in Zambia” Physics and Chemistry of the Earth 33 621–625.
Kane, R. P. and Teixeira. N R. (1991), “Power Spectrum Analysis of the Annual Rainfall Series for Massachusetts (NE. U.S.A)”, Climatic Change, 18: 89-94.
Lana, M. D. Martı´nez, C. Serra, and A. Burguen,(2005), “Periodicities and irregularities of indices describing the daily pluviometric regime of the Fabra Observatory (NE Spain)for the years 1917–1999” Theor. Appl. Climatol. 82, 183–198.
Lana.x and A. BurguenÄo(2000)” Statistical distribution and spectral analysis of rainfall anomalies for Barcelona (NE Spain)” Theor. Appl. Climatol. 66, 211-227.
Liu, Z. Y , Baoshan Cui(2008)” Spatial and temporal variability of annual precipitation during 1961–2006 in Yellow   River Basin, China” Journal of Hydrology 361, 330– 338.
Matyasovszky.I(2009)” Improving the methodology for spectral analysis of climatic time series” Theor Appl Climatol , DOI 10.1007/s00704-0212
Marengo .J. A, (2004) “Interdecadal variability and trends of rainfall across the Amazon basin” Theor. Appl. Climatol. 78, 79–96 .
Maslen. David. K. and Rockmore. Daniel.N 1997, Separation of Variables and The Computation of fourier Transforms on finit Groups, I. , American Mathematical Society. Volume 10 number 1 . PP 169-214
Mitchell.,Dzerdzeevskii,B.,Flohn,H.,Hofmeyr,W.L.,Lamb,H.H.,Rao,K.N.,and Wallen,c.c., (1966)” Climatic Change: Technical Note No. 79, Report of Working Group of Commission for Climatology” WMO No . 195 TP 100: Geneva, Switzerland, World Meteorological Organization, 81 P.
Mosmann, A. Castro, R. Fraile, J. Dessens, J.L. Sa´nchez(2004)” Detection of statistically significant trends in the summer precipitation of mainland Spain” Atmospheric Research 70 , 43–53.
Olsen Lena Ringstad,_, Probal Chaudhuri, Fred Godtliebsen(2008)” Multiscale spectral analysis for detecting short and long range change points in time series” Computational Statistics and Data Analysis 52, 3310–3330.
Rodriguez .roberto, mari´a-carmen llasat, and dennis wheeler(1999)” analysis of the barcelona precipitation series 1850–1991” int. J. Climatol. 19: 787–801.
Schickedanz, Paul T and Bowen. E. G (1977)” The Computation of Climatological Power Spectra, Journal of Applied Meteorology” Vol 16, 359-367.
Solow, Andrew, and james m.broadus, (1989)” on the detection of greenhouse warming” climatic change 15:449-153.
Selwam and R.Joshi ,(1995)”Universal spectrum for interannual variability in coads global air and sea-surface temperature” Int. J. Climatol, 15:613-623.
Spangenberg.A and M. Bredemeier (1999)”applications of spectral analysis to meteorological and soil solution chemistry data”chemosphere.vol.39, NO,10,pp,1651-1665.
Tomozeiu1. R., A. Busuioc2, V. Marletto1, F. Zinoni1, and C. Cacciamani, (2000) “Detection of changes in the summer precipitation time series of the region Emilia-Romagna, Italy “Theor. Appl. Climatol. 67, 193±200 .
Torrence and Webster,(1999)” Interdecadal Changes in the ENSO–Monsoon System” J. Climatol, 12: 2679- 2690.
Ventura and P. Rossi Pisa, E. Ardizzoni (2002)” Temperature and precipitation trends in Bologna (Italy) from 1952 to 1999 “Atmospheric Research 61 ,203– 214.
Yun-Ju. J, and Lee. J.Y. ( 2010)”Time series analysis of hydrologic data obtained from a man-made undersea LPG cavern” Engineering Geology 113 , 70–80.