پیش‌بینی تغییرات فصلی پارامترهای اقلیمی مناطق حفاظت شده در سال‌های 2011 تا 2039 با مدل HadCM3 (مطالعه موردی در استان همدان)

نویسندگان

دانشگاه ملایر

چکیده

مدیریت و برنامه‌ریزی در مناطق حفاظت شده ایران، مستلزم داشتن اطلاعات کافی از تغییرات آب و هوا، منابع آب و خاک و شرایط رشد و توسعه اکوسیستم‌ها و زیستگاه‌های حیات وحش در آینده است. اقلیم یکی از ستون‌های شکل گیری و اساس تغییرات این زیست بوم‌ها محسوب می‌شود. در پژوهش حاضر، داده‌های HadCM3 با استفاده از مدل LARS-WG و تحت سه سناریوی B1، A2 و A1B در منطقه حفاظت شده لشکردر ملایر در استان همدان ریز مقیاس نمایی شد. سپس تغییرات پارامترهای بارش، کمینه دما، بیشینه دما و تابش در سال‌های 2011 تا 2039 برای فصول مختلف پیش بینی گردید. نتایج نشان داد که بیشترین تغییرات بارش در فصول بهار و زمستان و بیشترین تغییرات مربوط به دما در فصول تابستان و بهار رخ می‌دهد. بیشترین تغییرات ساعات آفتابی در فصل تابستان و کمترین تغییرات در فصل پاییز و زمستان رخ خواهد داد. بارش در اکثر ماه‌ها روند افزایشی داشته که بیشترین آن در ماه‌های مارس، آوریل و دسامبر و کمترین آن مربوط به ماه‌های می‌ و ژانویه است. پارامترهای هواشناسی دمای کمینه و دمای بیشینه در تمام ماه‌ها روند افزایشی خواهند داشت. تغییرات ساعت آفتابی در ماه‌های آوریل، اوت، سپتامبر و دسامبرکاهشی و در بقیه ماه‌ها افزایشی است. به طور کلی نتایج نشان می‌دهد با تغییر سناریوهای اقلیمی که ریشه در مدیریت انسانی دارد پارامترهای هواشناسی در فصل زمستان روند کاهشی بیشتری نسبت به سایر فصول خواهند داشت. این درحالی است که فصل تابستان همواره دارای روند افزایشی در این پارامترهاست. بنابراین شرایط رشد و نمو و فنولوژی گیاهان، حاصلخیری ماهیانه و سالیانه، متابولیسم میکروبی خاک و شرایط رطوبتی زیست بوم تغییر یافته، بنابراین لزوم تغییر برنامه‌های مدیریتی در 30 سال آینده این منطقه حفاظت شده ضرورت می‌یابد. 

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of Moisture Flux Convergence and moisture sources for precipitation in the southern coasts of Caspian Sea

نویسندگان [English]

  • Hamid Nouri
  • Alireza Ildoromi
Malayer University
چکیده [English]

Extended Abstract 1- Introduction Moisture flux convergence (MFC) is some moisture in and moisture convergence terms. The function is calculated on the basis special humidity and wind vectors and it is used to forecast the thunderstorms and heavy precipitations. It is a term theatmosphere that moves from side to another side. It combines from advection humidity in the conservation of water vapor equation and was first calculated in the 1950s and 1960s as a vertically integrated quantity to predict rainfall associated with synoptic-scale systems. MFC was eventually suggested for use in forecasting convective initiation in the midlatitudes in 1970, but practical MFC usage quickly evolved to include only surface data, owing to the higher spatial and temporal resolution of surface observations. Since then, surface MFC has been widely applied as a short-term (0–3 h) prognostic quantity for forecasting convective initiation, with an emphasis on determining the favorable spatial locations for such development. This research investigates moisture flux convergence in convective, non-convective, super-heavy and heavy precipitation events in the southern coasts of Caspian Sea. It studies therole of each humidity resources to occur precipitation in different regions in the north of Iran. 2- Methodology: On the basis of daily precipitations in seven stations during 1961 to 2008, with regard to 25 and 50 percent probability, precipitation events are divided into heavy and super heavy precipitations. The events are also grouped into convective and non-convective precipitations based on the clouds synoptic codes. The moisture sources are distinguished using moisture flux convergence and humidity advection in different level pressures from 1000 to 500 hpa over the past 2 days. Moisture sources are distinguished for precipitations in the north of Iran. 3– Discussion Figure1 shows that there is the most frequency of moisture flux convergence in the west area in compare with the east and mountainous regions. There are the maximum functions at 06:00 GMT for different precipitation regions. Figure 2 indicates that the functions are in the convective group more than thenon-convective group and super-heavy than heavy precipitation events. There are the maximum functions at 06:00 GMT for different precipitation groups. Fig.1. Moisture flux convergence mean in different precipitation regions in 1000hpa level(gr/kgs) 18 12 06 00 Observational times Precipitation regions 10 12 16 12 west region, super heavy group 5 8 12 9 West region, heavy group 8 10 14 11 Mountainous region, super heavy group 4 8 12 6 Mountainous region, heavy group 6 8 8 6 East region, super heavy group 4 8 8 6 East region, heavy group Fig.2. Moisture flux convergence mean in different precipitation groups in 1000hpa level(gr/kgs) 18 12 06 00 Observational times Precipitation groups 6 15 18 12 Convective and super heavy precipitation 6 9 12 8 Nonconvective and super heavy precipitation 4 8 12 7 Convective and heavy precipitation 2 6 11 5 Nonconvective superheavy precipitation 4– Conclusion The difference between heavy and super-heavy precipitation in terms of moisture flux convergence is more in convective than non-convective events. The frequency of moisture sources is more in super-heavy precipitation than heavy precipitation. However, the Caspian Sea is the first supplier moisture sources for the precipitation in the north of Iran, the Black Sea and the Mediterranean Sea are the second supplier sources respectively in super-heavy and heavy precipitation.

            

کلیدواژه‌ها [English]

  • Keyword: precipitation
  • SST
  • 2m air temperature
  • the southern coasts of Caspian Sea